UNIQUENESS OF THE INVERSE OF A TRANSFORMATION

By G. T. Whyburn

1. Introduction. In an earlier paper [4] the author has characterized both irreducibility and strong irreducibility of a continuous transformation $f(x)$ acting on a metric continuum in terms of the density of points whose images have unique inverses. These results were obtained in a simple way largely through the use of upper semi-continuity of certain real valued "diameter" functions associated with the given transformation. Recently G. S. Young [5] has shown that if the simple links [2] of a continuum are disjoint, uncountably many must be degenerate and, in a footnote, this result is formulated in the convenient language of continuous transformations. As such, of course, it takes the form of a theorem asserting that the inverse will be single valued for uncountably many image points under a particular kind of monotone mapping of a continuum onto a dendrite.

In this paper it will be shown first how the semi-continuity of the diameter function: $\phi(y)=\delta\left[f^{-1}(y)\right], y \varepsilon B$, where $f(A)=B$ is the given mapping, can be made to yield in a very simple way much less restrictive conditions under which the points with a unique inverse will be uncountably everywhere dense in B. Other methods are then employed to show that for interior non-alternating transformations $f(M)=N$, where M is a continuum, every A-set, cut point, simple link, and end point of M is necessarily an inverse set.

It will be recalled that a continuous transformation $f(A)=B$ is (i) monotone if $f^{-1}(y)$ is a continuum for each $y \varepsilon B$, (ii) non-alternating if for $x, y \varepsilon B, f^{-1}(x)$ separates no two points of $f^{-1}(y)$ in A, and (iii) interior (or open) if the image of every open set in A is open in B. A subset X of A satisfying

$$
X=f^{-1} f(X)
$$

is called an inverse set.
In all our results it is understood that the spaces involved are separable and metric. For terminology and other definitions the reader is referred to the author's book Analytic Topology [3]. In particular it should be noted that a continuum is a compact connected set and that an A-set A in such a continuum M is a closed subset of M such that $M-A$ is the sum of a null sequence (G_{i}) of disjoint open sets each bounded by a single point of A. Also two points of such a continuum M are conjugate if no point separates them in M.

2. Uniqueness by means of cut points.

(2.1) Theorem. If A is a continuum and $f(A)=B$ is continuous and such that the image points of cut points of A are dense in B and for each y ع B any two

