SEQUENCES WITH VANISHING EVEN DIFFERENCES

BY HARRY POLLARD

Let $\{x_k\}$ be a complex sequence, and $\{d_n\}$ the differences defined by

$$d_n = \sum_{k=0}^n \binom{n}{k} (-1)^k x_k$$
.

R. P. Agnew [1] has shown that if the x_k are bounded then the condition

(1)

$$d_{2n} = 0$$
 (*n* = 0, 1, ···)

implies that all the x_k are zero.

We shall prove the following generalization.

THEOREM. If

(2)
$$x_k = O(k) \qquad (k \to \infty),$$

then the condition (1) implies that $x_k = kx_1$, for all k.

COROLLARY. If

(3)

 $x_k = o(k) \qquad (k \to \infty)_{\bullet}$

then the condition (1) implies that all the x_k are zero.

The example $x_k = k$ shows that (3) cannot be improved. The following lemma will be needed.

LEMMA. If $Rz \leq 0, z = re^{i\theta}$, then

$$(|1 - z| - |z|)^{-2} \le 4(|z|^{2} + 1).$$

Proof of lemma. Since $\pi/2 \leq \theta \leq 3\pi/2$

$$(|1 - z| - |z|)^{-2} = ((1 + r^2 - 2r \cos \theta)^{\frac{1}{2}} - r)^{-2}$$

$$\leq ((1 + r^2)^{\frac{1}{2}} - r)^{-2} = ((1 + r^2)^{\frac{1}{2}} + r)^2$$

$$\leq 4((1 + r^2)^{\frac{1}{2}})^2.$$

Proof of theorem. Define f(z) by

$$f(z) = \sum_{n=0}^{\infty} d_n z^n.$$

The convergence of this series will follow from subsequent operations. Formally we have

$$f(z) = \sum_{n=0}^{\infty} z^n \sum_{k=0}^{n} {\binom{n}{k}} (-1)^k x_k$$

Received February 8, 1945.