SOME NEW CHARACTERIZATIONS OF THE EUCLIDEAN SPHERE

By Shiing-shen Chern

1. Introduction. Among convex surfaces in three-dimensional Euclidean space the sphere can be characterized in various ways. In this note we shall give some further characterizations of the sphere based on the consideration of differential-geometric properties of convex surfaces. The characterizations are of the nature that a certain local property holds throughout the surface and the theorems in question are not valid locally. Some theorems on non-convex closed surfaces will also be given.

In a Euclidean space of three dimensions we consider a closed surface S, differentiable of class $C^{m}, m \geq 3$, and with the property that the tangent plane to S is well defined at every point. At a point of S let r_{1} and r_{2} denote the principal curvatures. S is called convex if the Gaussian curvature $K=r_{1} r_{2}$ is everywhere positive. It is called a W-surface if $d r_{1}$ and $d r_{2}$ are linearly dependent, that is, if functions λ_{1}, λ_{2} exist, not both zero, such that

$$
\begin{equation*}
\lambda_{1} d r_{1}+\lambda_{2} d r_{2}=0 \tag{1}
\end{equation*}
$$

This means either that both r_{1} and r_{2} are constant or that r_{1} and r_{2} are connected by a functional relation

$$
\begin{equation*}
F\left(r_{1}, r_{2}\right)=0 \tag{2}
\end{equation*}
$$

We shall call our W-surface special, if the functions λ_{i} in (1) can be chosen to be positive: $\lambda_{i}>0, i=1,2$. With exception of the case $r_{i}=$ constant, $i=1,2$, a special W-surface is one for which one principal curvature is a strictly monotone decreasing function of the other. Examples of such special W-surfaces are given by: (a) $r_{1} r_{2}=$ constant >0; (b) $r_{1}+r_{2}=$ constant, etc. With these definitions our first theorem can be stated as follows:

Theorem 1. A convex special W-surface is a sphere.
The proof of Theorem 1 will be given in the next sections. It is perhaps interesting to give some of its consequences. By introducing the Gaussian curvature K and the mean curvature H of the surface according to the formulas

$$
\begin{align*}
K & =r_{1} r_{2}, \tag{3}\\
2 H & =r_{1}+r_{2}, \tag{4}
\end{align*}
$$

we have immediately the corollaries (see [1; 195-199]):
Corollary 1. A closed surface of constant Gaussian curvature is a sphere.
Received January 18, 1945.

