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1. In a series of recent papers [1], [2], [3], and [4] we have considered a singular
point of a plane curve such that the tangent at this point of the curve has with
the curve a contact of order greater than one. On the other hand E. P. Lane
[5] has treated the sextactic point of a plane curve, a singularity for which the
osculating conic, taken in place of the tangent, has a contact of order five with
the curve. After defining an invariant point analogous to Halphen point he
has determined the canonical expansion of the curve by means of the neighbor-
hood of order eight. In projective differential geometry of curves we are often
bound to consider the canonical expansion determined by the neighborhood of
order seven instead of eight. A new method is proposed here for this purpose.
When the osculating conic becomes a k (] >_ 6)-point conic at 0 we call O

a ]c-ic point. Although Lane’s method of determining Halphen point fails for
]c 6, our method remains applicable for 7-ic and 8-ic points.

2. Let a point in a plane be given by non-homogeneous coSrdinates x, y; then
the homogeneous coSrdinates xl x2, Xo may be defined by

Xl x2x- y-
Xo Xo

We select first the triangle of reference such that the vertex 0(0, O, 1) is the
sextactic point of the given curve C and the side y 0 the tangent of the curve
at 0. If (0, 1, 0) be taken on the osculating conic, then the curve C can be
represented in the neighborhood of 0 by a power series expansion of the form

(1) y ax + ex +fx +gx - hx - (10),

where ae O.
Through a given point A (1, 0, a) on y 0 we can draw besides y 0, another

tangent

(2) 4aoxl 4axo --x=0

to the osculating conic

(3) XoX ax O.
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