# THE LIMIT-CIRCLE CASE FOR A POSITIVE DEFINITE J-FRACTION 

By Joseph J. Dennis and H. S. Wall

1. Introduction. In a recent paper, Wall and Wetzel [10] extended a large part of the Stieltjes theory to a class of continued fractions with complex elements. These continued fractions have been called positive definite $J$-fractions, and are of the form

$$
\begin{equation*}
\frac{1}{b_{1}+z}-\frac{a_{1}^{2}}{b_{2}+z}-\frac{a_{2}^{2}}{b_{3}+z}-\ldots \tag{1.1}
\end{equation*}
$$

in which $z$ is a complex variable, and the $a_{p}$ and $b_{p}$ are complex constants whose imaginary parts $\alpha_{p}=I\left(a_{p}\right)$ and $\beta_{p}=I\left(b_{p}\right)$ are restricted by the requirement that the quadratic forms

$$
\begin{align*}
& F_{n}(x, x)=\sum_{p=1}^{n}\left(\beta_{p}+y\right) x_{p}^{2}-2 \sum_{p=1}^{n-1} \alpha_{p} x_{p} x_{p+1}>0  \tag{1.2}\\
& \quad\left(y=I(z)>0, \sum_{p=1}^{n} x_{p}^{2}>0\right) .
\end{align*}
$$

Building upon the determinant inequalities

$$
\begin{equation*}
D_{n}(y)>0 \text { for } y>0 \quad(n=1,2,3, \cdots) \tag{1.3}
\end{equation*}
$$

where $D_{n}(y)$ is the discriminant of $F_{n}(x, x)$, they construct a "nest of circles" $K_{n}(z), n=1,2,3, \cdots$, each inside the preceding, such that the $n$-th approximant of the $J$-fraction lies upon $K_{n}(z)$; they show that if the radius $r_{n}(z)$ of $K_{n}(z)$ tends to zero ("limit-point case") for one $z$ in the upper half-plane, $I(z)>0$, then $r_{n}(z)$ tends to zero for every such $z$ ("theorem of invariability"); and they obtain asymptotic and integral expressions for the $J$-fraction. They do not answer the questions of convergence and character of the limit-function in the case where $r_{n}(z)$ has a positive limit ("limit-circle case"). The main object of the present paper is to answer these questions. We show that in the limit-circle case the convergence of the J-fraction or of its reciprocal for a single value of $z$ implies the convergence of the J-fraction or of its reciprocal for every value of $z$ to a meromorphic limit-function.

In order to obtain this result, we find it necessary to develop anew part of the theory in [10], building upon the inequalities

$$
\begin{array}{cc}
\beta_{p} \geq 0, \quad \alpha_{p}^{2}=\frac{1}{2}\left[\left|a_{p}^{2}\right|-R\left(a_{p}^{2}\right)\right] \leq \beta_{p} \beta_{p+1}\left(1-g_{p-1}\right) g_{p}  \tag{1.4}\\
0 \leq g_{p-1} \leq 1 & (p=1,2,3, \cdots)
\end{array}
$$

Received October 18, 1944.

