THE VALUE REGION PROBLEM FOR CONTINUED FRACTIONS

By Ralph E. Lane

1. Introduction. A number of writers have considered the problem of obtaining estimates for the values of the approximants of a continued fraction when the coefficients are subject to specified conditions. One of the earliest results is the theorem of Pringsheim [4] that if $\left|b_{p}\right| \geq\left|a_{p-1}\right|+1, p=1,2,3, \cdots$, then the approximants of the continued fraction

$$
\begin{equation*}
\frac{a_{0}}{b_{1}}+\frac{a_{1}}{b_{2}}+\frac{a_{2}}{b_{3}}+\frac{a_{3}}{b_{4}}+\cdots \tag{1.1}
\end{equation*}
$$

have moduli not greater than unity. In recent years a number of results have been obtained for the continued fraction (1.1) in the case where the b_{p} are different from zero. Except for an unimportant factor, we may in this case write (1.1) in the form

$$
\begin{equation*}
\frac{1}{1}+\frac{a_{1}}{1}+\frac{a_{2}}{1}+\frac{a_{3}}{1}+\ldots \tag{1.2}
\end{equation*}
$$

It will be convenient to have the following definitions. By the value region problem for the continued fraction (1.2) we shall understand the problem of determining pairs of regions E and V in the complex plane, such that if the elements a_{p} have arbitrary values in E, then the approximants of (1.2) have all their values in V. We shall call E and V an element region and corresponding value region, respectively, and shall refer to (E, V) as a solution of the value region problem. If (E, V) is a solution, and V^{\star} is any region containing V, then of course $\left(E, V^{\star}\right)$ is also a solution. We shall call a solution (E, V) minimal if the closure of V^{\star} contains the closure of V for every other solution $\left(E, V^{\star}\right)$.

Scott and Wall [6] obtained the minimal solution

$$
\begin{equation*}
E:|z|-\Re(z) \leq \frac{1}{2}, \quad V:|z-1| \leq 1 \tag{1.3}
\end{equation*}
$$

Leighton and Thron [2] showed that

$$
\begin{equation*}
E:|z|-\Re(z) \leq \frac{1}{2} t, \quad V: z+z^{*} \geq|z|\left[2(1-t)^{\frac{1}{2}}+t|z|\right] \quad(0<t \leq 1) \tag{1.4}
\end{equation*}
$$

is a minimal solution; and Paydon and Wall [3] obtained the minimal solution

$$
\begin{equation*}
E:|z| \leq t(1-t), \quad V:\left|z-\frac{1}{1-t^{2}}\right| \leq \frac{t}{1-t^{2}} \quad\left(0<t \leq \frac{1}{2}\right) \tag{1.5}
\end{equation*}
$$

Received August 26, 1944; presented to the American Mathematical Society under a different title, April 23, 1943. The author wishes to express his appreciation to Professor H. S. Wall for assistance in the preparation of the paper.

