ELLIPTIC ORTHOGONAL POLYNOMIALS
By C. J. REEs

Introduction. Elliptic orthogonal polynomials (OP) may be defined as the
orthogonal polynomials ¢,(z), of degree n = 0, 1, - - - , which satisfy the relations

j: @n(@)om(x) % = Om,n (myn=0,1,-- '),

¢y
X(z, k) = (1 — 2")(1 — k%) 0<k<1.

The limiting case & = 0 yields trigonometric polynomials.

The above definition of elliptic polynomials is different from that adopted by
Achyeser [1], [2], [3].

In Part I of this paper we study the associated moments for which a recurrence
relation is derived and an interesting orthogonality property appears. In
Part II we derive for ¢,(x) a linear homogeneous differential equation of the
second order.

Heine [8; 294] derived such a differential equation for elliptic orthogonal
polynomials with the weight function (x(x — «)(x — 8))~*. The coefficients of
Heine’s equation however depend upon three parameters, two of which are
given in terms of a third as roots of two algebraic equations, each of degree
2n 4+ 1. Thus Heine’s differential equation is rather an existence proof and can
hardly be used for a further study of elliptic polynomials.

Employing the method of Shohat [15], we find explicitly the differential
equation for elliptic polynomials, with weight function X * whose coefficients
depend upon one parameter only; namely, A,—which plays such an important
réle in the theory of orthogonal polynomials—and for which we give a recurrence
relation.

I. Elliptic Moments

1. The function
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