SOLUTIONS OF SYSTEMS OF DIFFERENTIAL EQUATIONS IN THE VICINITY OF BRANCH POINTS OF THE SOLUTIONS, III

By JESSE PIERCE

Introduction. The system of differential equations to be considered in this paper has the form

(1)
$$x_1^{\alpha_1 i} x_2^{\alpha_2 i} \cdots x_n^{\alpha_n i} \frac{dx_i}{dt} = \frac{a_i}{m+1} + f_i(t) + \sum_{r=1}^{\infty} f_{i\mu}^{(r)} x_1^{\mu_1} x_2^{\mu_2} \cdots x_n^{\mu_n}$$
$$(i = 1, \dots, n),$$

where *m* is a positive integer, μ_1 , μ_2 , \cdots , μ_n are non-negative integers, μ represents the sequence μ_1 , μ_2 , \cdots , μ_n , $\nu = \mu_1 + \mu_2 + \cdots + \mu_n$, $a_i \neq 0$ and

(2)
$$\sum_{i=1}^{n} \alpha_{ii} = m$$
 $(i = 1, \dots, n).$

The functions f_i , $f_{i\mu}^{(r)}$ are assumed to have the following properties:

I. The functions f_i , $f_{i\mu}^{(p)}$ are integrable on the straight line in the *t*-plane from t_0 to the point *t*. The length of this straight line will be represented by *u*. II. The functions f_i , $f_{i\mu}^{(p)}$ satisfy the inequalities

(3)
$$\begin{cases} \mid f_i \mid \leq \frac{Mnu^{1/(m+1)}}{m+1} \\ \mid \frac{f_{i\mu}^{(r)}}{c_i} \mid \leq M \\ \mid b_i \mid \leq A \end{cases}$$

where the b_i and c_i are defined by equations (9) and (11) respectively and A and M are positive constants and A > 1.

1. Formal solution of the system of differential equations (1). The transformation

(4)
$$x_i = \sum_{h=1}^{\infty} K^h y_{ih}$$

reduces the system (1) to the form

$$K^{m+1}y_{11}^{\alpha_{1}i}y_{21}^{\alpha_{2}i}\cdots y_{n1}^{\alpha_{n}i}\frac{dy_{i1}}{dt} + \sum_{h=2}^{\infty}K^{m+h}\left[y_{11}^{\alpha_{1}i}y_{21}^{\alpha_{1}i}\cdots y_{n1}^{\alpha_{n}i}\frac{dy_{ih}}{dt} + \varphi_{ih}(y_{ik}, y_{ik}')\right]$$

$$= \frac{a_{i}}{m+1} + f_{i}(t) + \sum_{h=2}^{\infty}K^{h-1}g_{ih}(t, y_{1k})$$

$$\left(i, \ l = 1, \ \cdots, n; \ k = 1, \ \cdots, h - 1; \ y_{ik}' = \frac{dy_{ik}}{dt}\right),$$

Received August 16, 1944; in revised form December 14, 1944.