THE RANGES OF ADDITIVE SET FUNCTIONS

By A. Sobczyk and P. C. Hammer

1. Introduction. This paper contains observations on the nature of the range sets of real-valued, bounded, finitely additive set functions. The notation, definitions, and general setting are the same as in [1].

A finitely many-valued additive function has as range set all sums of subseries of a finite sequence $0, a_{1}, \cdots, a_{k}$, see $\S 2$. Any bounded additive set function $f(X)$ for which there exists an infinitely disjoint sequence of sets of \mathfrak{N}, X_{1}, X_{2}, \cdots, such that, for all $i, f\left(X_{i}\right)=a_{i} \neq 0$ and $f(X)$ is completely (that is, countably) additive for sums of X_{i} 's, contains in its range the non-denumerable set of all sums of subseries of the sequence $\left\{a_{i}\right\}$ (the latter is a perfect set). In particular, any non-negative, non-finitely many-valued, additive function has this property and hence has a non-denumerable range. There exists, however, an infinitely many-valued additive function having as range only a countable set of real numbers. Two additional examples of additive functions with nonclosed ranges are given (§3).
2. Finitely many-valued functions. Let $f(X)$ be an additive set function which assumes only a finite number of different values, including at least one positive and one negative value. Let X^{\prime} be a set on which f assumes its maximum positive value. Then f can be negative for no subset Y of X^{\prime}, since if this were the case we would have $f\left(X^{\prime}-Y\right)+f(Y)=f\left(X^{\prime}\right), f\left(X^{\prime}-Y\right)>f\left(X^{\prime}\right)$. Similarly, let $X^{\prime \prime}$ be a set for which f assumes its minimum value (negative). Then $f=0$ for the intersection $X^{\prime} \cdot X^{\prime \prime}$, and f obviously is the sum of finitely manyvalued non-negative and non-positive disjoint components f^{\prime} and $f^{\prime \prime}$ respecrively. If we apply Theorem 4.1 of [1] to f^{\prime} and $f^{\prime \prime}$ separately, it follows that $f(X)$ is the sum of a finite number of two-valued functions f_{1}, \cdots, f_{k}, having disjoint characteristic sets X_{1}, \cdots, X_{k}, with $M=X_{1}+\cdots+X_{k}$. That is, for each $i, f_{i}(X)$ is two-valued for all subsets of X_{i} in \mathfrak{M}, and $f_{i}(X)=f\left(X X_{i}\right)$ for all $X \varepsilon \mathfrak{T r}$. Hence we have

Theorem 2.1. A necessary and sufficient condition that a finite set of numbers S be the range of an additive set function is that there exist a finite series of numbers $0+r_{1}+r_{2}+\cdots+r_{k}$, such that S is the set of sums of all subseries of $0+r_{1}+$ $r_{2}+\cdots+r_{k}$.
3. Infinitely many-valued functions. In this section we consider the ranges of non-negative functions and construct additive functions which have denumerable ranges bounded and unbounded. These constructions are the more interesting in that, as we shall prove, the range of a non-negative additive set function

Received April 26, 1944.

