FUNCTIONS OF EXPONENTIAL TYPE, IV

By R. P. Boas, Jr.

1. In [1; 20] it was observed that an upper bound for the Whittaker constant is furnished by the absolute value r_n of the root of smallest absolute value of an exponential polynomial $f_n(z)$ satisfying $f'_n(z) = af_n(\epsilon z)$, where |a| = 1 and ϵ is a primitive *n*-th root of unity. I stated without proof that $r_5 > .84$ and that $\overline{\lim} r_n = \infty$ as $n \to \infty$. The first of these statements is incorrect, and the second is probably incorrect also; I had mistakenly supposed that it is indifferent which particular *n*-th root is chosen for ϵ . I have now computed r_5 for $f_5(z)$ when $\epsilon = e^{4\pi i/5}$, and find that

$$.7398 < r_5 < .7399$$

Since Levinson [2] has given an improved lower bound for the Whittaker constant W, we can now state that

The form of $f_5(z)$ most convenient for computation turns out to be

$$f_5(z) = \sum_{n=0}^{\infty} \frac{z^n e^{\frac{1}{2}n(n-1)}}{n!};$$

the value of r_5 is approximated by the root of smaller absolute value of $1 + A_5 z^5 + A_{10} z^{10} = 0$, where A_k is the coefficient of z^k in

$$f_5(z)f_5(\epsilon z)f_5(\epsilon^2 z)f_5(\epsilon^3 z)f_5(\epsilon^4 z).$$

More explicitly,

$$A_{5} = (25 - 65\epsilon + 30\epsilon^{2} + 20\epsilon^{3} - 10\epsilon^{4})/24,$$

 $A_{10} = (78125 - 515000\epsilon + 390000\epsilon^{2} + 390000\epsilon^{3} - 343125\epsilon^{4})/(10!).$

2. The conjecture that W = 2/e was attributed to the wrong author by an error in the reference system of [1]: on page 17, line 11 of §1, read [6] instead of [5].

References

- 1. R. P. BOAS, JR., Functions of exponential type, II, this Journal, vol. 11(1944), pp. 17-22.
- 2. N. LEVINSON, The Gontcharoff polynomials, this Journal, vol. 11(1944), pp. 729-733.

HARVARD UNIVERSITY.

Received August 9, 1944.