FUNCTIONS OF EXPONENTIAL TYPE, IV

By R. P. Boas, Jr.

1. In $[1 ; 20]$ it was observed that an upper bound for the Whittaker constant is furnished by the absolute value r_{n} of the root of smallest absolute value of an exponential polynomial $f_{n}(z)$ satisfying $f_{n}^{\prime}(z)=a f_{n}(\epsilon z)$, where $|a|=1$ and ϵ is a primitive n-th root of unity. I stated without proof that $r_{5}>.84$ and that $\overline{\lim } r_{n}=\infty$ as $n \rightarrow \infty$. The first of these statements is incorrect, and the second is probably incorrect also; I had mistakenly supposed that it is indifferent which particular n-th root is chosen for ϵ. I have now computed r_{5} for $f_{5}(z)$ when $\epsilon=e^{4 \pi i / 5}$, and find that

$$
.7398<r_{5}<.7399
$$

Since Levinson [2] has given an improved lower bound for the Whittaker constant W, we can now state that

$$
.728<W<.7399
$$

The form of $f_{5}(z)$ most convenient for computation turns out to be

$$
f_{5}(z)=\sum_{n=0}^{\infty} \frac{z^{n} e^{\frac{1}{n n(n-1)}}}{n!}
$$

the value of r_{5} is approximated by the root of smaller absolute value of $1+$ $A_{5} z^{5}+A_{10} z^{10}=0$, where A_{k} is the coefficient of z^{k} in

$$
f_{5}(z) f_{5}(\epsilon z) f_{5}\left(\epsilon^{2} z\right) f_{5}\left(\epsilon^{3} z\right) f_{5}\left(\epsilon^{4} z\right)
$$

More explicitly,

$$
\begin{gathered}
A_{5}=\left(25-65 \epsilon+30 \epsilon^{2}+20 \epsilon^{3}-10 \epsilon^{4}\right) / 24 \\
A_{10}=\left(78125-515000 \epsilon+390000 \epsilon^{2}+390000 \epsilon^{3}-343125 \epsilon^{4}\right) /(10!)
\end{gathered}
$$

2. The conjecture that $W=2 / e$ was attributed to the wrong author by an error in the reference system of [1]: on page 17, line 11 of §1, read [6] instead of [5].

References

1. R. P. Boas, Jr., Functions of exponential type, II, this Journal, vol. 11(1944), pp. 17-22.
2. N. Levinson, The Gontcharoff polynomials, this Journal, vol. 11(1944), pp. 729-733.

Harvard University.

Received August 9, 1944.

