TWO POWER SERIES THEOREMS EXTENDED TO THE LAPLACE TRANSFORM

By I. I. HIRSCHMAN, JR.

- 1. Introduction. We are going to generalize two theorems concerning power series to the corresponding theorems about the Laplace-Stieltjes transform. These are: a theorem to the effect that gaps produce over-convergence and an analogue of Jentzsch's theorem. The first of these theorems has been stated but not proved by S. Ríos [2]. The methods of proof are simply an application of the methods used for power series.
 - 2. We now state and prove the first of our theorems.

Theorem 2.1. Let us suppose that the Laplace-Stieltjes transform

$$f(s) = \int_0^\infty e^{-st} d\alpha(t)$$

has an abscissa of convergence $\sigma_c = 1$, and let us suppose that there are sequences of suffixes $q_k \geq (1 + \theta)p_k$ with fixed positive θ such that $\alpha(t)$ is constant for $p_k \leq t \leq q_k$. Then the corresponding sequence of partial integrals

$$A_{pk}(s) = \int_0^{pk} e^{-st} d\alpha(t)$$

is convergent in a region of which every regular point of f(s) on the abscissa of convergence is an interior point.

Proof. It is sufficient to consider the point s=1. If f(s) is regular at s=1, then, for sufficiently small δ , f(s) is regular in and on the circle with center $s=\frac{3}{2}$ and radius $(\frac{1}{2}+\delta)$. We tacitly assume that $\delta<\frac{1}{2}$, which we may clearly do. We apply Hadamard's three circles theorem to the function

$$\phi(s) = f(s) - A_{nk}(s)$$

and the circles with center $\frac{3}{2}$ and radii $(\frac{1}{2} - \delta)$, $(\frac{1}{2} + \epsilon)$, and $(\frac{1}{2} + \delta)$, where $0 < \epsilon < \delta$. If M_1 , M_2 , and M_3 are the maximum moduli of $\phi(s)$ on these circles, then Hadamard's theorem implies

$$M_2^{\log{(1+2\delta)}/(1-2\delta)} \leq M_1^{\log{(1+2\delta)}/(1+2\epsilon)} M_3^{\log{(1+2\epsilon)}/(1-2\delta)}.$$

Having made a sufficiently small but definite choice of δ and ϵ , we will show that the above equation implies that $M_2 \to 0$ as $k \to \infty$, which will clearly prove

Received May 17, 1944.