NÖRLUND SUMMABILITY OF MULTIPLE FOURIER SERIES

By John G. Herriot

1. Introduction. Let $x=(x_1, \dots, x_k)$ be a point in the k-dimensional Euclidean space and let $f(x)=f(x_1, \dots, x_k)$ be a Lebesgue integrable function having period 2π in each variable. Let its Fourier series be

$$(1.1) f(x) \sim \sum_{n} a_{n} \dots_{n} e^{i(n_{1}x_{1} + \dots + n_{k}x_{k})},$$

where

$$(1.2) a_{n_1 \cdots n_k} = \frac{1}{(2\pi)^k} \int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} f(x) e^{-i(n_1 x_1 + \cdots + n_k x_k)} dx.$$

In this paper we shall consider both the rectangular partial sums

(1.3)
$$s_{N_1 \cdots N_k}(x; f) = \sum_{n_1 = -N_1}^{N_1} \cdots \sum_{n_k = -N_k}^{N_k} a_{n_1 \cdots n_k} e^{i(n_1 x_1 + \cdots + n_k x_k)}$$

and also the "triangular" partial sums

$$(1.4) T_N^0(x;f) = \sum_{\nu \leq N} a_{n_1 \cdots n_k} e^{i(n_1 x_1 + \cdots + n_k x_k)} (\nu = |n_1| + \cdots + |n_k|).$$

The reason for calling these partial sums "triangular" is evident if we consider the double Fourier series and observe the shape of the array of terms for n_1 , $n_2 \geq 0$.

We shall consider chiefly Nörlund [8] methods of summability. To define the Nörlund transform of any simple sequence $\{y_n\}$, let $\{p_n\}$ be any sequence of constants. Let

$$P_n = \sum_{k=0}^n p_k \neq 0.$$

The Nörlund mean of $\{y_n\}$ is

$$(1.5) t_n = \frac{1}{P_n} \sum_{k=0}^{n} p_{n-k} y_k .$$

If t_n tends to a finite limit as $n \to \infty$, the sequence $\{y_n\}$ is said to be summable N_p to this limit. We shall consider only regular Nörlund methods of summability. The conditions of regularity for N_p are [4, 758]

(1.6)
$$\sum_{k=0}^{n} |p_k| = O(|P_n|), \qquad p_n/P_n \to 0 \text{ as } n \to \infty.$$

Cesàro (C, α) , $\alpha \geq 0$, is clearly a regular Nörlund method, for in this case $P_0 = 1$, $P_n = A_n^{\alpha} = (\alpha + 1) \cdots (\alpha + n)/n!$ for $n \geq 1$.

Received May 14, 1944; presented to the American Mathematical Society April 29, 1944.