ADDITIVE PROPERTIES OF COMPACT SETS

BY PAUL A. WHITE

There are a great number of theorems in topology concerning the relationship between the sets A, B, $A \cdot B$, and A + B. In this paper a further study of this relationship is made.

It will be assumed throughout that all sets used lie in a compact metric space. All of our complexes and cycles will be non-oriented, and the Vietoris cycles used will consist of these cycles as coördinates. Finally the boundary of the *i*-dimensional Vietoris cycle x^i will be denoted by \dot{x}^i , and $\delta(A)$ will be used to denote the diameter of the set A.

Let p^{i} be a property concerned with *i*-cycles. We shall consider properties p^{i} which satisfy

THEOREM A. If M_1 and M_2 are two compact subsets of a compactum $M_1 + M_2$ having p^i and $M_1 \cdot M_2$ has p^{i-1} , then $M_1 + M_2$ has p^i .

DEFINITION. A property p^i satisfying Theorem A will k called *additive*.

THEOREM 1. (Uniform) local i-connectedness is additive.

Proof. Let $\epsilon > 0$ be arbitrary. There exists a positive number δ' corresponding to the local *i*-connectedness of M_1 and M_2 such that any *i*-dimensional cycle of M_1 or M_2 of diameter $< 2\delta'$ is ~ 0 in a subset of M_1 or M_2 of diameter $<\frac{1}{3}\epsilon$. Since $M_1 \cdot M_2$ is (i - 1)-lc (locally (i - 1)-connected), there exists a positive number $\delta < \delta'$ such that any (i - 1)-dimensional Vietoris cycles of $M_1 \cdot M_2$ of diameter $< \delta < \frac{1}{3}\epsilon$ is ~ 0 in a subset of $M_1 \cdot M_2$ of diameter $< \delta'$. Let x' be an *i*-dimensional Vietoris cycle of $M_1 + M_2$ with diameter $<\delta$. By infinitesimal alterations in x^i we can obtain a Vietoris cycle, which without loss of generality can be considered as x^i itself, such that in almost all the coördinates each simplex is contained wholly in M_1 or M_2 (i.e., no simplex lies partly in $M_1 - M_1 \cdot M_2$ and partly in $M_2 - M_1 \cdot M_2$). For each (sufficiently large) j let x_{1i}^{i} be the complex consisting of those simplexes of x_{i}^{i} which lie entirely in M_{1} . Let $x_{2i}^i = x_i^i - x_{1i}^i$, which by the above alterations will consist entirely of simplexes contained in M_2 (but not wholly in M_1). Choose $\eta > 0$ arbitrarily. Then, for almost all $j, k, x_i^i \sim x_k^i$ (in a subset of $M_1 + M_2$ of diameter $< \delta < \frac{1}{3}\epsilon$). Now $\dot{x}_{1i}^i = \dot{x}_{2i}^i = x_i^{i-1}$ is an (i-1)-dimensional cycle of $M_1 \cdot M_2$. A subsequence of (x_i^{i-1}) will give a Vietoris cycle x^{i-1} of $M_1 \cdot M_2$ with diameter $<\delta$. Therefore $x^{i-1} \sim 0$ in a subset of $M_1 \cdot M_2$ of diameter $<\delta'$, i.e., there exists a chain y^i of $M_1 \cdot M_2$ bounded by x^{i-1} . Now $x_{1i}^i + y_i^i$ is a cycle of M_1 and $x_{2i}^i + y_i^i$ is a cycle of M_2 . Choosing subsequences we obtain cycles $(x_{1i}^i + y_i^i)$ and $(x_{2i}^i + y_i^i)$ with diameters $< 2\delta'$ in M_1 and M_2 respectively. Therefore $(x_{1i}^i + y_i^i) \sim 0$ in a

Received April 10, 1944.