CONGRUENCE OF QUADRATIC FORMS OVER VALUATION RINGS
By WiLriam H. DURrFEE

1. Introduction. In 1937 Witt [7; 34] proved a theorem for quadratic forms
over fields of characteristic not two, namely, that, if f + ¢g and f + h are two
congruent non-singular forms such that ¢ and h each have no variables in com-
mon with f, then g is congruent to h. This theorem, recently extended by Jones
[1] to forms over the ring of p-adic integers, p an odd prime, is shown here to
be more generally true for forms over any complete valuation ring whose asso-
ciated residue-class field has characteristic not two. Although, as shown by
counter-examples given at the end of this paper, the theorem does not always
hold if the characteristic of the residue-class field is two, e.g., the ring of 2-adic
integers, Jones and the author have some results for this case and hope in a
forthcoming paper to show under what conditions Witt’s theorem will hold for
these rings. Since many of the preliminary theorems for both cases are much
alike and can be proved simultaneously with little extra effort, we have included
them here in a form covering both cases.

If V(2) = 0, the congruence of two quadratic forms is equivalent to the con-
gruence of their corresponding matrices, but if V(2) > 0, this is no longer so.
In this paper we shall consider only classical forms, that is, those which have a
symmetric matrix with elements in the ring; and now with this restriction the
two problems are the same. Hence in our theorems and proofs we shall use the
language of quadratic forms and that of symmetric matrices interchangeably
without further comment.

2. Notations and preliminary theorems. Let K be a field with an exponential
valuation V which is complete with respect to this valuation (that is, every
sequence which is Cauchy convergent with respect to V has a limit in K) and
such that the value group has Archimedean order. (For the definition and
elementary properties of an exponential valuation, cf. [6; 248-251] or [3; 17, 22].)
The ring of elements of K whose values > 0 is the valuation ring R of K with
respect to V. The elements of R with values >« form an ideal I, in R, and the
corresponding residue-class ring R, = R/I, , which plays an important réle in
our investigations, is, then, a homomorphic image of R. If a is an element of R,
a* will denote its residue classin R, . Since we shall seldom be considering two
or more o’s simultaneously, this notation for the residue classes is not confusing.

If A is an m X n rectangular matrix (a;;) over B, a;;in R (t = 1,2, - -+ , m;
i=1,2, ---,n), then (a%) will be an m X n rectangular matrix A* over R, .

In this paper small italic letters and small Greek letters will, in general, denote
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