DEPENDENCE RELATIONS IN A SEMI-MODULAR LATTICE

By R. P. Dilworth

Introduction. Let L be an upper semi-modular lattice of finite dimensions. Then, by definition, L satisfies the Birkhoff condition: If a covers $a \cap b$, then $a \cup b$ covers b. L is also characterized by the existence of a rank function $\rho(a)$. which takes on integer values and has the properties:
$\mathrm{R}_{1}: \rho(z)=0$, where z is the null element of L.
$\mathrm{R}_{2}: \rho(a)=\rho(b)+1$ if a covers b.
$\mathrm{R}_{3}: \rho(a \cup b)+\rho(a \cap b) \leq \rho(a)+\rho(b)$.
Let P denote the set of points of L, that is, those elements p such that $\rho(p)=1$. Then it is well known [3] that, if one defines $p \Delta S$ if and only if $u(S) \supseteq p$, then Δ is a dependence relation oveı the subsets S of P with the properties:
$\mathrm{D}_{1}: p \Delta S+p$.
D_{2} : If $p \Delta S$ and $S \Delta T$, then $p \Delta T$.
$\mathrm{D}_{3}:$ If $p \Delta S+p^{\prime}$, then either $p \Delta S$ or $p^{\prime} \Delta S+p$.
Conversely, if a dependence relation Δ having properties $\mathrm{D}_{1}, \mathrm{D}_{2}$, and D_{3} is defined over the subsets of a set P, then the closed subsets of P (subsets S such that $p \Delta S$ implies $p \varepsilon S$) form a semi-modular point lattice. If Δ is the dependence relation defined above, then the lattice of closed subsets is simply the lattice within L of elements which are unions of points.

Now if one defines Δ in a similar manner over the set P_{n} of elements q such that $\rho(q)=n$, where $n>1$, then D_{3} no longer holds for Δ. Nevertheless, we shall show that by means of a considerable modification of the definition one obtains a dependence relation over P_{n} such that $\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}$ hold and which reduces to that defined above when $n=1$. It follows that the elements of P_{n} are embedded in the semi-modular point lattice of closed subsets.

As an application to embedding problems we prove the following theorem:
Theorem 3.1. Every modular lattice of length three or less can be embedded. isometrically in a complemented modular lattice.

Since there exist modular lattices of length four which cannot be embedded in complemented modular lattices [2] this is the best possible result.

As an application in a somewhat different direction, let B be the Boolean algebra of subsets of a finite set S. Then we have

Theorem 3.2. The lattice of closed subsets of the set of elements of B of rank twois isomorphic to the partition lattice of S

1. Quasi-modular lattices. Let M be a lattice with elements a, b, c, \cdots and containing relation $a \supseteq b$. If $a \supseteq x \supseteq b$ implies $a=x$ or $x=b$ we say that a

Received February 28, 1944.

