A STABILITY PROPERTY OF SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS

By Richard Bellman

1. The following theorem was proved by Carleman [2; 170 et seq.] and Weyl [3; 238, Satz 5].

THEOREM 1. If, for one complex number l, all solutions of

(1.1)
$$u''(x) + g(x)u(x) + lu(x) = 0$$

belong to $L^2(0, \infty)$, then all solutions of

(1.2)
$$u''(x) + g(x)u(x) + au(x) = 0,$$

where a is any complex number, also belong to $L^2(0, \infty)$.

Using a method of a previous paper [1] on a related topic, we wish to extend this result in several directions and prove

THEOREM 2. If, for one bounded function $f_1(x)$, all the solutions of

(1.3)
$$u''(x) + g(x)u(x) + f_1(x)u(x) = 0$$

belong to $L^{p}(0, \infty)$ and $L^{p'}(0, \infty)$, where

1

then all the solutions of

(1.4)
$$u''(x) + g(x)u(x) + f_2(x)u(x) = 0,$$

where $f_2(x)$ is any bounded function, belong to $L^{p}(0, \infty)$ and $L^{p'}(0, \infty)$.

For p = 1, the theorem becomes

THEOREM 3. If, for one bounded function $f_1(x)$, all solutions of (1.3) belong to $L(0, \infty)$ and are bounded, then all the solutions of (1.4), where $f_2(x)$ is any bounded function, belong to $L(0, \infty)$ and are bounded.

All functions considered are assumed measurable.

2. We shall need the following lemmas for the proof.

LEMMA 1. If

(2.1)
$$| y(x) | \leq M \Big(1 + K \int_0^x | y(t) | | f(t) | dt \Big),$$

Received March 1, 1944.