TWO THEOREMS CONCERNING COMBINATIONS

By KINTZYUR SHYÜ

1. Statement of the theorems. This paper gives two theorems about combinations. From some point of view, each of them may be regarded as a generalization of the multinomial theorem and other formulas.

Before stating the theorems, the following definition is required.

DEFINITION. A set of numbers (x_1, x_2, \dots, x_n) is said to be over all different compositions of *m* into *n* parts with each $x_n \ge k$ if (x_1, x_2, \dots, x_n) varies over all different integral solutions of the equation $x_1 + x_2 + \dots + x_n = m$ with each $x \ge k$. And we denote it by using the notation (m; k; x) or (m; k).

THEOREM 1. Let (x_1, \dots, x_n) , (y_1, \dots, y_n) , (z_1, \dots, z_n) , \dots be over all different compositions of m, m', m'', \dots into n parts with each $x \ge r_1$, $y \ge r_2$, $z \ge r_3$, \dots , respectively. Then, for any positive integers $k_1(\ge r_1)$, $k_2(\ge r_2)$, $k_3(\ge r_3)$, \dots and constants a, b, c, \dots , we have

$$\sum_{\substack{(m;r_1;z),(m';r_3;y),(m'';r_3;z),\cdots}} \prod_{r=1}^{n} \left[a\binom{x_r}{k_1} + b\binom{y_r}{k_2} + c\binom{z_r}{k_3} + \cdots \right]$$

= $n! \sum_{\substack{(n;0;\alpha,\beta,\gamma,\cdots)}} \frac{\binom{m+n(1-r_1)+\alpha r_1-1}{n+\alpha k_1-1} \binom{m'+n(1-r_2)+\beta r_2-1}{n+\beta k_2-1}}{\alpha!\beta!\gamma!\cdots}$
 $\cdot \binom{m''+n(1-r_3)+\gamma r_3-1}{n+\gamma k_3-1} \cdots a^{\alpha} b^{\beta} c^{\gamma} \cdots$

THEOREM 2. Let k_1 , k_2 , k_3 , \cdots be any positive integers all different from zero. Then we have

$$\sum_{\substack{(m;1;x)\\r=1}}\prod_{r=1}^{n}\left[a\binom{x_{r}}{k_{1}}+b\binom{x_{r}}{k_{2}}+c\binom{x_{r}}{k_{3}}+\cdots\right]$$
$$=\sum_{\substack{(n;0;\alpha,\beta,\gamma,\cdots)\\r=1}}\frac{n!}{\alpha!\beta!\gamma!\cdots}\binom{m+n-1}{\alpha k_{1}+\beta k_{2}+\gamma k_{3}+\cdots+n-1}a^{\alpha}b^{\beta}c^{\gamma}\cdots$$

Obviously, the theorems are independent of each other.

2. **Proof of the theorems.** The proof of Theorem 1 or Theorem 2 depends essentially on the following lemma.

LEMMA. For any positive integers r_1 , r_2 , \cdots , r_n , we have

$$\sum_{\substack{(m;0;x) \\ (m;0;x)}} \binom{x_1}{r_1} \binom{x_2}{r_2} \cdots \binom{x_n}{r_n} = \binom{x_1 + x_2 + \cdots + x_n + n - 1}{r_1 + r_2 + \cdots + r_n + n - 1} \\ = \binom{m + n - 1}{\sum r + n - 1}.$$

Received October 1, 1943.