TWO THEOREMS CONCERNING COMBINATIONS

By Kintzyur Shyü

1. Statement of the theorems. This paper gives two theorems about combinations. From some point of view, each of them may be regarded as a generalization of the multinomial theorem and other formulas.

Before stating the theorems, the following definition is required.
Definition. A set of numbers ($x_{1}, x_{2}, \cdots, x_{n}$) is said to be over all different compositions of m into n parts with each $x_{v} \geq k$ if ($x_{1}, x_{2}, \cdots, x_{n}$) varies over all different integral solutions of the equation $x_{1}+x_{2}+\cdots+x_{n}=m$ with each $x \geq k$. And we denote it by using the notation $(m ; k ; x)$ or $(m ; k)$.
Theorem 1. Let $\left(x_{1}, \cdots, x_{n}\right),\left(y_{1}, \cdots, y_{n}\right),\left(z_{1}, \cdots, z_{n}\right), \cdots$ be over all different compositions of $m, m^{\prime}, m^{\prime \prime}, \cdots$ into n parts with each $x \geq r_{1}, y \geq r_{2}$, $z \geq r_{3}, \cdots$, respectively. Then, for any positive integers $k_{1}\left(\geq r_{1}\right), k_{2}\left(\geq r_{2}\right)$, $k_{3}\left(\geq r_{3}\right), \cdots$ and constants a, b, c, \cdots, we have

$$
\begin{aligned}
& \sum_{\left(m ; r_{1} ; x\right),\left(m^{\prime} ; r_{2} ; y\right),\left(m^{\prime} ; ; r_{3} ; z\right), \ldots} \prod_{n=1}^{n}\left[a\binom{x_{v}}{k_{1}}+b\binom{y_{v}}{k_{2}}+c\binom{z_{\nu}}{k_{3}}+\cdots\right] \\
& =n!\sum_{(n ; 0 ; \alpha, \beta, \gamma, \cdots)} \frac{\binom{m+n\left(1-r_{1}\right)+\alpha r_{1}-1}{n+\alpha k_{1}-1}\binom{m^{\prime}+n\left(1-r_{2}\right)+\beta r_{2}-1}{n+\beta k_{2}-1}}{\alpha!\beta!\gamma!\cdots} \\
& \quad \cdot \begin{array}{c}
\left.m^{\prime \prime}+\begin{array}{c}
n\left(1-r_{3}\right)+\gamma r_{3}-1 \\
n+\gamma k_{3}-1
\end{array}\right) \cdots a^{\alpha} b^{\beta} c^{\gamma} \cdots
\end{array}
\end{aligned}
$$

Theorem 2. Let $k_{1}, k_{2}, k_{3}, \cdots$ be any positive integers all different from zero. Then we have

$$
\begin{aligned}
\sum_{(m ; 1 ; x)} & \prod_{v=1}^{n}\left[a\binom{x_{v}}{k_{1}}+b\binom{x_{v}}{k_{2}}+c\binom{x_{v}}{k_{3}}+\cdots\right] \\
& =\sum_{(n ; 0 ; \alpha, \beta, \gamma, \cdots)} \frac{n!}{\alpha!\beta!\gamma!\cdots}\binom{m+n-1}{\alpha k_{1}+\beta k_{2}+\gamma k_{3}+\cdots+n-1} a^{\alpha} b^{\beta} c^{\gamma} \cdots
\end{aligned}
$$

Obviously, the theorems are independent of each other.
2. Proof of the theorems. The proof of Theorem 1 or Theorem 2 depends essentially on the following lemma.

Lemma. For any positive integers $r_{1}, r_{2}, \cdots, r_{n}$, we have

$$
\begin{aligned}
\sum_{(m ; 0 ; x)}\binom{x_{1}}{r_{1}}\binom{x_{2}}{r_{2}} \ldots\binom{x_{n}}{r_{n}} & =\binom{x_{1}+x_{2}+\cdots+x_{n}+n-1}{r_{1}+r_{2}+\cdots+r_{n}+n-1} \\
& =\binom{m+n-1}{\sum r+n-1} .
\end{aligned}
$$

Received October 1, 1943.

