THE SINGULARITIES IN A FAMILY OF ZETA-FUNCTIONS

By Aurel Wintner

1. If p runs through all primes, then $\Pi\left(1-p^{-s}\right)^{-1}=\zeta(s)$ for $\sigma>1$, where $s=\sigma+i t$. This implies that $\Pi\left(1+p^{-s}\right)^{-1}=\zeta(2 s) / \zeta(s)$ for $\sigma>1$. These two functions, which are meromorphic in the whole plane, are the particular cases $e^{i \theta}= \pm 1$ of the analytic function represented in the half-plane $\sigma>1$ by the product $\Pi\left(1-e^{i \theta} / p^{s}\right)$, where $e^{i \theta}$ is any constant of absolute value 1 . The results of the present note will imply that, if the two classical cases $e^{i \theta}= \pm 1$ are excluded, then, whether $e^{i \theta}$ is or is not a root of unity, the function admits across the line $\sigma=1$ an analytic continuation leading to logarithmic branchpoints which cluster above the line $\sigma=0$.

The same holds if $e^{i \theta}$ is replaced by α, where α is any constant which is not a real, rational number. The situation is fully described by the following theorem:

If $\zeta_{\alpha}(s)$, where α is a real or complex constant, denotes the analytic function represented by the product

$$
\begin{equation*}
\zeta_{\alpha}(s)=\prod_{p}\left(1-\alpha p^{-s}\right)^{-1} \tag{1}
\end{equation*}
$$

in the half-plane $\sigma>1$, then
(i) unless α is a real, rational integer, the function possesses an analytic continuation which, in all of its branches, exists for $\sigma>0$ and has, over the half-plane $\sigma>0, a$ sequence of isolated branch-points clustering over the line $\sigma=0$;
(ii) all the singularities situated over the half-plane $\sigma>0$ are algebraic, but not all of them are poles, if and only if α is a real, rational number but not an integer;
(iii) if α is a real, rational integer, the function possesses a single-valued analytic continuation and is meromorphic in the half-plane $\sigma>0$ but has the natural boundary $\sigma=0$, except when either $\alpha= \pm 1$ or $\alpha=0$ (in which three cases the function is meromorphic in the whole plane, since

$$
\begin{equation*}
\zeta_{1}(s)=\zeta(s), \quad \zeta_{-1}(s)=\zeta(2 s) / \zeta(s), \quad \zeta_{0}(s) \equiv 1 \tag{2}
\end{equation*}
$$

where $\zeta(s)$ denotes Riemann's zeta-function).
In all cases (i), (ii), (iii), the function $(s-1)^{\alpha} \zeta_{\alpha}(s)$ is
(I) regular and non-vanishing on the line $\sigma=1$ in virtue of the prime number theorem;
(II) regular and non-vanishing in the half-plane $\sigma>\frac{1}{2}$, if Riemann's hypothesis $\left(\right.$ for $\left.\zeta(s)=\zeta_{1}(s) i t s e l f\right)$ is true.
2. The proof will be based on an adaptation of the method applied by Estermann [1] to a formally related, but algebraically quite different, class of ordinary

Received December 3, 1943.

