THE SINGULARITIES IN A FAMILY OF ZETA-FUNCTIONS

BY AUREL WINTNER

1. If p runs through all primes, then $\prod (1 - p^{-s})^{-1} = \zeta(s)$ for $\sigma > 1$, where $s = \sigma + it$. This implies that $\prod (1 + p^{-s})^{-1} = \zeta(2s)/\zeta(s)$ for $\sigma > 1$. These two functions, which are meromorphic in the whole plane, are the particular cases $e^{i\theta} = \pm 1$ of the analytic function represented in the half-plane $\sigma > 1$ by the product $\prod (1 - e^{i\theta}/p^s)$, where $e^{i\theta}$ is any constant of absolute value 1. The results of the present note will imply that, if the two classical cases $e^{i\theta} = \pm 1$ are excluded, then, whether $e^{i\theta}$ is or is not a root of unity, the function admits across the line $\sigma = 1$ an analytic continuation leading to logarithmic branch-points which cluster above the line $\sigma = 0$.

The same holds if $e^{i\theta}$ is replaced by α , where α is any constant which is not a real, rational number. The situation is fully described by the following theorem:

If $\zeta_{\alpha}(s)$, where α is a real or complex constant, denotes the analytic function represented by the product

(1)
$$\zeta_{\alpha}(s) = \prod_{p} (1 - \alpha p^{-s})^{-1}$$

in the half-plane $\sigma > 1$, then

(i) unless α is a real, rational integer, the function possesses an analytic continuation which, in all of its branches, exists for $\sigma > 0$ and has, over the half-plane $\sigma > 0$, a sequence of isolated branch-points clustering over the line $\sigma = 0$;

(ii) all the singularities situated over the half-plane $\sigma > 0$ are algebraic, but not all of them are poles, if and only if α is a real, rational number but not an integer;

(iii) if α is a real, rational integer, the function possesses a single-valued analytic continuation and is meromorphic in the half-plane $\sigma > 0$ but has the natural boundary $\sigma = 0$, except when either $\alpha = \pm 1$ or $\alpha = 0$ (in which three cases the function is meromorphic in the whole plane, since

(2)
$$\zeta_1(s) = \zeta(s), \qquad \zeta_{-1}(s) = \zeta(2s)/\zeta(s), \qquad \zeta_0(s) \equiv 1,$$

where $\zeta(s)$ denotes Riemann's zeta-function).

In all cases (i), (ii), (iii), the function $(s-1)^{\alpha}\zeta_{\alpha}(s)$ is

(I) regular and non-vanishing on the line $\sigma = 1$ in virtue of the prime number theorem;

(II) regular and non-vanishing in the half-plane $\sigma > \frac{1}{2}$, if Riemann's hypothesis (for $\zeta(s) = \zeta_1(s)$ itself) is true.

2. The proof will be based on an adaptation of the method applied by Estermann [1] to a formally related, but algebraically quite different, class of ordinary

Received December 3, 1943.