RANDOM FACTORIZATIONS AND RIEMANN'S HYPOTHESIS

BY AUREL WINTNER

Let (\pm) be a space consisting of two points, + and -, and carrying that measure function for which the measure of either point is $\frac{1}{2}$ (so that the (\pm) space is of measure 1). Consider the infinite product space $(\pm) \times (\pm) \times \cdots$, consisting of the points (\pm, \pm, \cdots) each of which represents an arbitrary decision of each of the independent alternatives \pm, \pm, \cdots , and assign the product measure of the measures carried by the factor spaces $(\pm), (\pm), \cdots$ to be the measure carried by the product space (so that the (\pm, \pm, \cdots) -space becomes of measure 1). The customary realization of this product space and of its measure results by writing an arbitrary real number x of the interval $0 \le x \le 1$ in the dyadic form

(1)
$$x = 0.\theta_1\theta_2\cdots\theta_n\cdots,$$

where θ_n denotes the binary "digit" 1 or 0 according as the upper or the lower sign is chosen in the alternative

(2)
$$\theta_n = \frac{1}{2} \pm \frac{1}{2},$$

and then declaring the points of the interval $0 \le x \le 1$ and the Euclidean Lebesgue measure of (measurable) sets of such points to be the corresponding points of the (\pm, \pm, \cdots) -space and the measures of (measurable) sets of the image sets respectively. The mapping (1)-(2) of the infinite (\pm, \pm, \cdots) -space on the interval $0 \le x \le 1$ is essentially one-to-one, since the set of those points x for which the dyadic expansion (2) is not unique (i.e., for which $\theta_n = \theta_n(x)$ can and/or must be chosen independent of k from a certain $n = n_0 = n_0(x)$ onward) is enumerable.

With reference to this measure on the (\pm, \pm, \cdots) -space, a theorem of Khintchine and Kolmogoroff states that, if a_1, a_2, \cdots is any fixed sequence of values, almost all or almost none of the series

(3)
$$\sum_{n=1}^{\infty} \pm a_n$$

are convergent according as the vector (a_1, a_2, \cdots) is or is not in Hilbert's space:

(4)
$$\sum_{n=1}^{\infty} |a_n|^2 < \infty$$

(cf., e.g., [3], where a simple proof and various references are given). It follows that, if c_1, c_2, \cdots is a fixed bounded sequence,

(5)
$$c_n = O(1)$$
 $(n \to \infty),$

Received November 29, 1943.