SYSTEMS OF LINEAR EQUATIONS OF ANALYTIC TYPE

By I. M. Sheffer

1. Introduction. A linear problem concerning analytic functions is often expressed in terms of the power series coefficients of the functions; this leads the problem to a system of linear equations, in the coefficients, of the following form:

$$
\begin{equation*}
A_{n}[X] \equiv \sum_{k=0}^{\infty} a_{n k} x_{k}=c_{n} \quad(n=0,1, \cdots) \tag{1.1}
\end{equation*}
$$

where X represents the sequence $\left\{x_{n}\right\}$. We denote by \mathbb{Q} the system of linear forms appearing on the left side of (1.1).

Obvious examples of (1.1) come from linear differential and difference equations. An interesting special problem leading to a system (1.1) is the problem of Takenaka [1], [4], [5] wherein a sequence $\left\{a_{n}\right\}$ lying in $|z| \leq 1$ is given, and it is required to find the largest number r such that every function of exponential type less than r is identically zero if $f^{(n)}\left(a_{n}\right)=0$ for all $n \geq 0$. If we set $f(z)=$ $\sum_{0}^{\infty} x_{n} \cdot z^{n} / n!$, the conditions $f^{(n)}\left(a_{n}\right)=0$ become

$$
\sum_{k=0}^{\infty}\left(a_{n}^{k} / k!\right) x_{n+k}=0 \quad(n=0,1, \cdots)
$$

and this is of type (1.1). It has the further property of being of triangular form; that is, in the n-th equation no x_{i} of index less than n occurs.

The general triangular system can be written

$$
\begin{equation*}
A_{n}[X] \equiv \sum_{k=0}^{\infty} a_{n, n+k} x_{n+k}=c_{n} \quad(n=0,1, \cdots) \tag{1.2}
\end{equation*}
$$

A particular but important case of (1.2) was investigated by Perron [3] in extending a classical result of Poincaré on the asymptotic character of solutions of a linear recurrence equation.

Taking cognizance of the fact that the x_{n} 's are power series coefficients, we introduce the

Definition. By the type of the sequence $\left\{x_{n}\right\}$ is meant the number $\left(\left(x_{n}\right)\right)$, where

$$
\begin{equation*}
\left(\left(x_{n}\right)\right) \equiv \lim _{n=\infty} \sup \left|x_{n}\right|^{1 / n} . \tag{1.3}
\end{equation*}
$$

(The notation $\left(\left(x_{n}\right)\right)$ is less cumbersome than the "lim sup", especially when the fractional exponent is considered.)

Two important problems concerning system (1.1) are these: (i) To determine the range of validity of the transformation from $\left\{x_{n}\right\}$ to $\left\{c_{n}\right\}$. (ii) To determine,

Received September 3, 1943; presented to the American Mathematical Society December 28, 1942.

