ALGEBRAIC-LOGARITHMIC SINGULARITIES AND HADAMARD'S DETERMINANTS

By George Piranian

1. If $s=u+i v$ is a complex constant, k a non-negative integer, and $\varphi(z)$ a function which is holomorphic and not zero at z_{0}, and if $\log \left(z-z_{0}\right)$ is assigned its principal value in the region $|z|>\left|z_{0}\right|$, then

$$
g(z)=e^{-s \log \left(z-z_{0}\right)}\left[\log \left(z-z_{0}\right)\right]^{k} \varphi(z)
$$

will be said to be an algebraic-logarithmically singular element at z_{0}. The element will be said to have compound order

$$
\begin{aligned}
& (u, k) \text { if } s \neq 0,-1,-2, \cdots, \\
& (u, k-1) \text { if } s=0,-1,-2, \cdots \text {, and } k>0 \text {, } \\
& (-\infty, 0) \text { if } s=0,-1,-2, \cdots \text {, and } k=0 \text {. }
\end{aligned}
$$

Of two compound orders (a, b) and (a^{\prime}, b^{\prime}) the first will be defined to be greater than the second if either $a>a^{\prime}$ or $a=a^{\prime}$ and $b>b^{\prime}$. A function $f(z)$ will be said to have an algebraic-logarithmic singularity at z_{0} if $f(z)$ is the sum of a finite number of algebraic-logarithmically singular elements at z_{0}. The compound order of this singularity (or of $f(z)$ at z_{0}) will be the greatest of all the compound orders of the singular elements at z_{0}; and the algebraic-logarithmic singularity will be said to be ordinary if only one of the singular elements at z_{0} has the compound order of the singularity at z_{0}.
It is the purpose of this paper to present the solution of the following problem: Given a sequence $\left\{a_{n}\right\}$, and given that the function $f(z)$ represented by the series $\sum a_{n} / z^{n}$ has an ordinary algebraic-logarithmic singularity at z_{0} and is holomorphic in the region $|z|>\left|z_{0}\right|$ save for poles $z_{1}, z_{2}, \cdots, z_{m}$ of multiplicities $r_{1}, r_{2}, \cdots,{ }_{m}$, to find the compound order of $f(z)$ at z_{0}.

In $\S \S 3$ and 4 we shall prove a theorem that covers a special case of the problem. A simple extension provides the general solution stated in §5.
2. Our solution depends on a result due to Jungen [1] and on the evaluation of Hadamard's determinants

$$
D_{n, p}=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \cdots & a_{n+p} \\
a_{n+1} & a_{n+2} & \cdots & a_{n+p+1} \\
\cdots & \cdots & \cdots & \cdots \\
a_{n+p} & a_{n+p+1} & \cdots & a_{n+2 p}
\end{array}\right|
$$

Received September 4, 1943. The author wishes to thank Professor S. Mandelbrojt for yaluable criticisms and suggestions received during the preparation of this paper.

