SOME PROPERTIES OF FUNCTIONS SATISFYING PARTIAL DIFFERENTIAL EQUATIONS OF ELLIPTIC TYPE

By Kaj L. Nielsen

1. Introduction. In the Weierstrass-Hadamard approach to the theory of analytic functions of one complex variable we study the properties of an analytic function $f(z)$ from the coefficients of the function elements of $f(z)$. The results may also be formulated as relations between the properties of harmonic functions $h(x, y)$ of two real variables and the coefficients $a_{m n}$ of the series development $h(x, y)=\sum a_{m n} x^{m} y^{n}$. The similarity between the properties of harmonic functions and those satisfying partial differential equations

$$
\begin{equation*}
\mathrm{L}(U)=U_{z 2^{*}}+a U_{z}+b U_{2^{*}}+c U=0 \tag{1.1}
\end{equation*}
$$

where a, b, c are analytic functions of $z=x+i y$ and $z^{*}=x-i y$ and $U_{z z^{*}}=$ $\partial^{2} U / \partial z \partial z^{*}, U_{z}=\partial U / \partial z, U_{z^{*}}=\partial U / \partial z^{*}$, suggests that we may apply the methods of the theory of functions of a complex variable to the study of functions U satisfying (1.1). For this purpose Bergman [4], [5] has introduced operators in the space of functions

$$
\begin{equation*}
U=P(f)=\int_{-1}^{+1} E\left(z, z^{*}, t\right) f\left(\frac{1}{2} z\left[1-t^{2}\right]\right)\left[1-t^{2}\right]^{-\frac{1}{2}} d t \tag{1.2}
\end{equation*}
$$

which transforms the class A of analytic functions of one complex variable into a certain class of functions $\mathbf{C}(E)$. He has proved that
$\left(1^{\circ}\right)$ if E is a solution of the equation

$$
\begin{align*}
& G(E)=\left(1-t^{2}\right)\left(E_{z^{*} t}+a E_{t}\right) \\
& \quad-\frac{1}{t}\left(E_{z^{*}}+a E\right)+2 z t\left(E_{z z^{*}}+a E_{z}+b E_{z^{*}}+c E\right)=0 \tag{1.3}
\end{align*}
$$

which satisfies certain conditions, then every function U of the class $\mathbf{C}(E)$ will be a particular solution of $\mathbf{L}(U)=0$ and that there always exist solutions E satisfying the mentioned conditions;
$\left(2^{\circ}\right)$ it is possible to determine two functions, say E_{1} and E_{2}, so that the totality of functions $U_{1}+U_{2}, U_{1} \varepsilon \mathbf{C}\left(E_{1}\right), U_{2} \varepsilon \mathbf{C}^{\mathbf{4}}\left(E_{2}\right)$ represents the totality of solutions of $\mathbf{L}(U)=0$, see [4], [5]. $\mathbf{C}^{\mathbf{\Delta}}$ is an analogous class of functions, the f (see (1.2)) being an analytic function of $\frac{1}{2} z^{*}\left(1-t^{2}\right)$.

The equation (1.1) is equivalent to a system of two equations. If $a=b^{*}$ and c is real then these equations are independent of each other and it is only necessary to take the real part of (1.2), see [1;540], [7]. Thus the study of various ques-

Received April 14, 1943; presented to the American Mathematical Society February 28, 1942. This paper was written in part while the author was a Carnegie Research Fellow in the Program for Advanced Instruction and Research in Mechanics at Brown University.

