SEQUENCE COMPLETION OF LATTICE MODULS

By C. J. EVERETT

1. Introduction. (The properties of lattice moduls cited in this section may be found in [2; Chapter VII], [3].) A lattice modul L is an Abelian group, additively written, whose elements $(0, a, b, \cdots)$ are lattice ordered (union $a \lor b$, intersection $a \land b$) by a relation $a \ge b$, subject to the condition: $a \ge b$ implies $a + c \ge b + c$. By a > b is meant $a \ge b$ and $a \ne b$.

The identities $(a \lor b) + c = (a + c) \lor (b + c)$, $a = (a \lor 0) + (a \land 0)$ and $a + b = (a \lor b) + (a \land b)$ follow readily from the definition of L. The latter insures uniqueness of relative complements: $a \lor b_1 = a \lor b_2$ and $a \land b_1 = a \land b_2$ imply $a + b_1 = a + b_2$, $b_1 = b_2$. The lattice L is therefore distributive.

In a lattice modul $0 \le na = a + \cdots + a$ (*n* summands), for some *n*, implies $a \ge 0$. From this (n = 2) follows $a \lor -a \ge 0$, and $-(a \lor -a) = -a \land a \le 0$. This inequality together with distributivity yields

(1.1)
$$(a \lor 0) \land (-a \lor 0) = 0.$$

The absolute |a| of an element $a \in L$ is defined by $|a| = a \lor -a$, already noted ≥ 0 . Other properties of |a|: |a| = |-a|; |a| = 0 if and only if a = 0; $|a + b| \le |a| + |b|; |a| = (a \lor 0) - (a \land 0); |a - b| = (a \lor b) - (a \land b);$ and

$$(1.2) |a_1 - a_2| = |(a_1 \lor b) - (a_2 \lor b)| + |(a_1 \land b) - (a_2 \land b)|.$$

The order in L is linear in case for every two elements a, b either $a \ge b$ or $b \ge a$; Archimedean if for every a > 0, b > 0 there is an integer n such that $na = a + \cdots + a > b$. L is called *integrally closed* in case the boundedness (below) of all natural multiples of an element a ($na \ge b$, all n) implies $a \ge 0$. L is complete in case every set of elements bounded above has a l.u.b. Clifford [3] and Lorenzen [6] have shown integral closure necessary and sufficient for the order embedding of L in a complete lattice modul.

Lattice moduls may be classified as linear or non-linear. Linear Archimedean moduls are submoduls of the real field with the usual order [3]. Non-Archimedean linear moduls are submoduls of (transfinite) lexicographically ordered vector spaces $\{\cdots, a_{\tau}, \cdots\}$ with a_{τ} components in Archimedean linear moduls; e.g., $(a_1, a_2) > (b_1, b_2)$ if the first non-zero difference $a_i - b_i > 0$. Of special interest are the non-Archimedean linear ordered fields [8].

Non-linear lattice moduls are order embeddable as sublattices of "vectorgroups", i.e., groups of "vectors" $\{\cdots, a_{\tau}, \cdots\}, a_{\tau} \in L_{\tau}$ a *linear* ordered modul, τ on any range T, with usual vector addition, and componentwise order: $\{\cdots, a_{\tau}, \cdots\} \geq \{\cdots, b_{\tau}, \cdots\}$ meaning $a_{\tau} \geq b_{\tau}$, all $\tau \in T$. This follows from

Received February 1, 1943.