PLANE SECTIONS OF CERTAIN RULED SURFACES ASSOCIATED WITH A CURVED SURFACE

By Chuan-Chif Hsiung

1. Introduction. Let P_{x} be a general point of an analytic non-ruled surface S referred to its asymptotic net in ordinary projective space, and let C be any curve on the surface S through the point P_{x}. As the point P_{x} moves along the curve C, the tangents u, v generate two ruled surfaces R_{u}, R_{v} respectively. If a general plane π intersects the asymptotic tangents u, v at P_{x} of the surface S respectively in two points T, T^{*}, then the latter are simple points of the plane sections Γ_{u}, Γ_{v} of the two ruled surfaces R_{u}, R_{v} made by π. The purpose of the present paper is to study such plane sections in detail.
$\S 2$ contains power series expansions of the plane sections Γ_{u}, Γ_{v} which are used in later developments. In $\S 3$ a new transformation of Čech is obtained from the polarity between $T T^{*}$ and a line through P_{x}. In the last section we continue to find the loci of certain osculating conics of the plane sections Γ_{u}, Γ_{0} at the points T, T^{*}, and then derive a one-parameter family of cones of the sixth class.
2. Power series expansions. Let the surface S under consideration be an analytic non-ruled surface in ordinary space. We employ the notation of [3; 69, 71,79] and consider a curve C imbedded in the one-parameter family of curves defined on the surface S by the equation

$$
\begin{equation*}
d v-\lambda d u=0 \tag{1}
\end{equation*}
$$

The u-tangent at a point X near the point P_{x} on the curve C is determined by X, X_{u}, whose non-homogeneous coördinates are

$$
\begin{align*}
\xi_{1}= & \Delta u+\frac{1}{2}\left(\theta_{u}+\gamma \lambda^{2}\right) \Delta u^{2}+\cdots, \\
\eta_{1}= & \lambda \Delta u+\frac{1}{2}\left(\beta+\theta_{v} \lambda^{2}+\lambda^{\prime}\right) \Delta u^{2}+\cdots, \tag{2}\\
\zeta_{1}= & \lambda \Delta u^{2}+\cdots, \\
\xi_{2}= & \frac{1}{p \Delta u}\left[1+\left(\theta_{u}-\frac{G}{2 p}\right) \Delta u+\cdots\right], \\
\eta_{2}= & \frac{1}{p \Delta u}\{\beta \Delta u \tag{3}\\
& \left.+\frac{1}{2}\left[\beta_{u}+\beta \theta_{u}+2(p+\beta \psi) \lambda+\left(\beta \gamma+\theta_{u v}\right) \lambda^{2}-\frac{\beta G}{p}\right] \Delta u^{2}+\cdots\right\}, \\
\zeta_{2}= & \frac{1}{p \Delta u}\left[\lambda \Delta u+\frac{1}{2}\left(\beta+2 \theta_{u} \lambda+\theta_{v} \lambda^{2}+\lambda^{\prime}-\frac{G}{p} \lambda\right) \Delta u^{2}+\cdots\right],
\end{align*}
$$

Received August 12, 1943.

