THE CONSTRUCTION OF A CERTAIN METRIC

By O. G. HARROLD, JR.

- 1. Introduction. In a previous paper S. Eilenberg and the author gave conditions characterizing those continua with a finite linear measure upon the choice of an appropriate metric [2]. In this paper such a metric is constructed with the neighborhood system of the continuum playing the fundamental rôle. The metric constructed below not only gives the continuum a finite linear measure but also has the property that for arbitrary points x and y, $x \neq y$, in the space X there is a point $z \in X x y$ such that $\rho(x, y) = \rho(x, z) + \rho(z, y)$. Such a metric is usually termed convex. In addition to [6] where the concept of convexity was introduced we may mention [1] and [3].
 - 2. The main result. For a continuum X the following conditions are equivalent:
- (C) To each point $p \in X$ and $\epsilon > 0$ there exists an uncountable family of neighborhoods $[U_{\alpha}]$ of p such that (a) $\delta(U_{\alpha}) < \epsilon$, (b) for arbitrary U_{α} , U_{β} in $[U_{\alpha}]$ either $\overline{U}_{\alpha} \subset U_{\beta}$ or $\overline{U}_{\beta} \subset U_{\alpha}$ and (c) $\overline{U}_{\alpha} U_{\alpha} = F(U_{\alpha})$ is a finite set.

 (B') There is a metric $\rho \sim \sigma$ on X, where ρ is convex and σ is the given metric,
- (B') There is a metric $\rho \sim \sigma$ on X, where ρ is convex and σ is the given metric, such that $L^1(X, \rho) < +\infty$.

The relation $\rho \sim \sigma$ is read ρ is topologically equivalent to σ .

- That $(B') \to (C)$ is a consequence of Corollary 1 of [2]. This paper is devoted to a direct proof that $(C) \to (B')$ (= (B) of [2] + convexity).
- 3. Some definitions and preliminaries. An arc $T \subset X$ is called a "free arc" if the interior of T is an open subset of X. By "free segment" in X is understood a homeomorph of 0 < t < 1 which is an open subset in X. The closure of a free segment in a locally connected continuum is either an arc or a simple closed curve.

A stably regular continuum is a compact connected metric space having no continuum of condensation (see [4; 238, Figs. 1, 3 and 4]). A useful characteristic property is a continuum which is the sum of a closed, totally disconnected set plus a countable set of free arcs relative to the continuum. Let R and E denote, respectively, the set of ramification points and the set of end-points of X. Another characteristic property: $\overline{R} + \overline{E}$ is totally disconnected. If X is a stably regular continuum which does not reduce to a simple closed curve, there is a

unique decomposition $X = \overline{R} + \overline{E} + \sum_{i=1}^{\infty} T_i$, where T_i is a component of $X - (\overline{R} + \overline{E})$ and T_i is a free segment. In the following we frequently have occasion to consider a closed, totally disconnected set $D \supset \overline{R} + \overline{E}$. The decomposition $X = D + \sum_{i=1}^{\infty} T_i$ is unique, where T_i is a component of X - D and

Received September 16, 1943.