PROJECTIVE INVARIANTS OF A PAIR OF SURFACES

By Chuan-Chif Hsiung

1. Introduction. Let σ, σ^{*} be two elements of the second order of two surfaces at two ordinary points A, A^{*} in ordinary space. Buzano [2] has shown the existence of a projective invariant of σ, σ^{*} together with a metric characterization, provided the tangent planes of σ, σ^{*} at the points A, A^{*} are distinct. As a supplement to the investigation of Buzano, Bompiani [1] has obtained some projective characterizations of this invariant.

The purpose of the present paper is to study the other case, where the tangent planes of σ, σ^{*} at the points A, A^{*} are coincident.

We have demonstrated that for two plane curves having a common tangent at two ordinary points no projective invariant can be determined by the neighborhood of the second order of the two curves at these points [3]. But the corresponding result for a pair of surfaces is quite different, since we have here one projective invariant.
2. A projective invariant. Let S, S^{*} be two surfaces in ordinary space having a common tangent plane at two ordinary points A, A^{*}; and t, t^{*} the harmonic conjugate lines of $A A^{*}$ respectively with respect to the asymptotic tangents of the surfaces S, S^{*} at the points A, A^{*}. Let the homogeneous projective coördinates of a point in the space be denoted by $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$. If the points A, A^{*} and the intersection P of the tangents t, t^{*} be chosen respectively for the vertices $(0,0,0,1),(0,1,0,0),(1,0,0,0)$ of the tetrahedron of reference, then the power series expansions of the two surfaces in the neighborhood of the points A, A^{*} may be written in the form:

$$
\begin{align*}
S: & \frac{x_{3}}{x_{4}}=l_{11}\left(\frac{x_{1}}{x_{4}}\right)^{2}+l_{22}\left(\frac{x_{2}}{x_{4}}\right)^{2}+\cdots, \tag{1}\\
S^{*}: & \frac{x_{3}}{x_{2}}=l_{33}\left(\frac{x_{1}}{x_{2}}\right)^{2}+l_{44}\left(\frac{x_{4}}{x_{2}}\right)^{2}+\cdots \tag{2}
\end{align*}
$$

Let us now consider the most general projective transformation

$$
\begin{align*}
& x_{1}^{\prime}=a_{11} x_{1}+a_{13} x_{3}, \quad x_{2}^{\prime}=a_{22} x_{2}+a_{23} x_{3}, \tag{3}\\
& x_{3}^{\prime}=a_{33} x_{3}, \quad x_{4}^{\prime}=a_{43} x_{3}+a_{44} x_{4},
\end{align*}
$$

which leaves the points A, A^{*}, P invariant. The effect of this transformation on equations (1), (2) is to produce two other equations of the same form whose coefficients, indicated by accents, are given by the formulas:

