THE ASYMPTOTIC FORMS OF THE SOLUTIONS OF AN ORDINARY LINEAR MATRIC DIFFERENTIAL EQUATION IN THE COMPLEX DOMAIN (CONTINUED)

By Homer E. Newell, Jr.

Introduction. In an earlier paper [2], I discussed the existence of solutions to the matric differential equation

$$
\frac{d}{d x} Y(x, \lambda)=\left\{\lambda\left(\delta_{i j} r_{j}(x)\right)+\left(q_{i j}(x, \lambda)\right)\right\} Y(x, \lambda)
$$

in which x and λ are complex variables. Under certain conditions of suitability imposed upon the coefficient functions and the domains of variation of x and λ [2; §2], it was possible to show that regions of existence can be constructed in which the differential equation possesses solutions of the form $P(x, \lambda) E(x, \lambda)$, where $E(x, \lambda)=\left(\delta_{i i} \exp \left\{\lambda \int^{x} r_{i}(x) d x\right\}\right)$, and $P(x, \lambda)$, analytic in x, reduces uniformly in x to the identity matrix when λ becomes infinite.

Specifically, I applied the elegant and basic concepts of associated and fundamental regions originated by R. E. Langer [$1 ; \S 3]$ to some of the cases in which the functions $r_{i}(x)$ have poles and the differences $r_{i}(x)-r_{i}(x)(i \neq j)$ have poles or zeros on the boundary of the x region in question. Langer had considered previously the case in which the coefficient functions $r_{i}(x)$ and $q_{i j}(x, \lambda)$ are all analytic and bounded as to x, and the differences $r_{i}(x)-r_{i}(x)(i \neq j)$ are all bounded from zero $[1 ; 2]$. In adapting the concept of associated regions to the cases in question, it seemed necessary to impose the condition upon the differences $r_{i}(x)-r_{i}(x)(i \neq j)$ that those having simple poles be of the form $a^{i j}\left(x-x_{0}\right)^{-1}$, where $\mathrm{a}^{i j}(\neq 0)$ is a constant $[2 ; \S 4$, Theorem 1]. It is the purpose of this paper to remove that restriction.

There is little to separate the present discussion from the former one; hence the notation and terminology adopted there will be retained. It will also be convenient to use here a continuation of the numbering and sectioning of the earlier paper.
8. Associated and fundamental regions. Suppose that x and λ range over regions of the complex plane which are suitable to equation (2.1) of [2] in the sense of the definition given in §2 of [2]. As noted in §3 of [2], there exists a set of functions $R_{i}(x)(j=1, \cdots, n)$ which are analytic except possibly for poles and logarithmic infinities on the boundary of the suitable x region, and which satisfy the relations [2]

$$
\begin{equation*}
\frac{d}{d x} R_{i}(x) \equiv r_{j}(x) \quad(j=1, \cdots, n) \tag{3.1}
\end{equation*}
$$

Received May 5, 1943.

