DECOMPOSITION OF ADDITIVE SET FUNCTIONS

BY C. E. RICKART

1. Introduction. This paper is concerned with the decomposition of additive set functions defined on a σ -field \mathfrak{M} to a linear normed vector space \mathfrak{X} . The principal results are contained in Theorems 3.3, 3.8 and 4.5. Special cases of Theorems 3.3 and 3.8 were previously obtained by R. S. Phillips [7]. Theorem 4.5 is a generalization of the familiar Lebesgue decomposition theorem [9; 35] to functions whose values lie in a linear normed space. In this generalization, we are also able to replace the measure function by an arbitrary outer measure.

Throughout the discussion, M will stand for an arbitrary abstract set of points. A class \Re of subsets of M is called a "ring" provided it contains the union and intersection of any pair of its elements. If a ring also contains the complement in M of each of its elements, then it is called a "field". A ring which contains the union and intersection of any denumerable sequence of its elements is called a " σ -ring". Similarly, a σ -ring which is a field is a " σ -field". A subclass \Re of a ring \Re is said to be "hereditary in \Re " provided it contains the intersection of each of its elements with every element of \Re . A ring \Re which is hereditary in a larger ring \Re is called an "ideal of \Re ". We will be concerned throughout with only one σ -field (of subsets of M) which will be denoted by \mathfrak{M} . All sets considered will be assumed, without exception, to be elements of \mathfrak{M} . If a class of sets is hereditary in \mathfrak{M} , then it will simply be called "hereditary", and if it is an ideal of \mathfrak{M} , then it will simply be called an "ideal". Most of the above definitions will be found in [2; 1, 58].

The union and intersection of two sets e_1 , e_2 , the union and intersection of a denumerable sequence of sets $\{e_n\}$, and the complement of a set e will be denoted respectively by the symbols $e_1 \cup e_2$, $e_1 \cap e_2$, $\sum e_n$, $\prod e_n$ and Ce. The usual variations on these symbols will also be used. The small Greek letter π will always stand for a *finite* set of positive integers or other indices. The notation $\{x \mid P\}$ will be used to indicate the class of all elements x which satisfy a given property P.

2. Strong boundedness of set functions. We will be concerned in what follows with functions x(e) defined in the σ -field \mathfrak{M} to a linear normed space \mathfrak{X} [1; 53]. The domain \mathfrak{D} of x(e) throughout the discussion will be assumed to be hereditary. x(e) is said to be "additive" provided $x(e_1 \cup e_2) = x(e_1) + x(e_2)$, for disjoint e_1 , e_2 such that $e_1 \cup e_2 \in \mathfrak{D}$. x(e) is "completely additive" provided $x(\sum e_n) = \sum x(e_n)$, for any sequence of disjoint sets $\{e_n\}$ such that $\sum e_n \in \mathfrak{D}$. It is evident that the series will be unconditionally convergent [5].

Received May 13, 1943; presented to the American Mathematical Society February 27, 1943.