DECOMPOSITION OF ADDITIVE SET FUNCTIONS

By C. E. Rickart

1. Introduction. This paper is concerned with the decomposition of additive set functions defined on a σ-field \mathfrak{M} to a linear normed vector space \mathfrak{X}. The principal results are contained in Theorems 3.3, 3.8 and 4.5. Special cases of Theorems 3.3 and 3.8 were previously obtained by R. S. Phillips [7]. Theorem 4.5 is a generalization of the familiar Lebesgue decomposition theorem [9; 35] to functions whose values lie in a linear normed space. In this generalization, we are also able to replace the measure function by an arbitrary outer measure.

Throughout the discussion, M will stand for an arbitrary abstract set of points. A class \Re of subsets of M is called a "ring" provided it contains the union and intersection of any pair of its elements. If a ring also contains the complement in M of each of its elements, then it is called a "field". A ring which contains the union and intersection of any denumerable sequence of its elements is called a " σ-ring". Similarly, a σ-ring which is a field is a " σ-field". A subclass \mathfrak{H} of a ring \Re is said to be "hereditary in \mathfrak{R} " provided it contains the intersection of each of its elements with every element of \mathfrak{R}. A ring \mathfrak{H} which is hereditary in a larger ring \Re is called an "ideal of \mathfrak{R} ". We will be concerned throughout with only one σ-field (of subsets of M) which will be denoted by \mathfrak{M}. All sets considered will be assumed, without exception, to be elements of \mathfrak{M}. If a class of sets is hereditary in \mathfrak{M}, then it will simply be called "hereditary", and if it is an ideal of \mathfrak{M}, then it will simply be called an "ideal". Most of the above definitions will be found in [2; 1,58].

The union and intersection of two sets e_{1}, e_{2}, the union and intersection of a denumerable sequence of sets $\left\{e_{n}\right\}$, and the complement of a set e will be denoted respectively by the symbols $e_{1} \cup e_{2}, e_{1} \cap e_{2}, \sum e_{n}, \Pi e_{n}$ and $C e$. The usual variations on these symbols will also be used. The small Greek letter π will always stand for a finite set of positive integers or other indices. The notation $\{x \mid P\}$ will be used to indicate the class of all elements x which satisfy a given property P.
2. Strong boundedness of set functions. We will be concerned in what follows with functions $x(e)$ defined in the σ-field \mathfrak{M} to a linear normed space $\mathfrak{X}[1 ; 53]$. The domain \mathfrak{D} of $x(e)$ throughout the discussion will be assumed to be hereditary. $x(e)$ is said to be "additive" provided $x\left(e_{1} \cup e_{2}\right)=x\left(e_{1}\right)+x\left(e_{2}\right)$, for disjoint e_{1}, e_{2} such that $e_{1} \cup e_{2} \varepsilon \mathfrak{D} . x(e)$ is "completely additive" provided $x\left(\sum e_{n}\right)=\sum x\left(e_{n}\right)$, for any sequence of disjoint sets $\left\{e_{n}\right\}$ such that $\sum e_{n} \varepsilon \mathfrak{D}$. It is evident that the series will be unconditionally convergent [5].

