A THEOREM OF FÉDOROFF AND BINNEY

By MAXWELL READE

The object of this note is to extend a theorem on harmonic functions, due to Fédoroff [2] and Binney [1], to subharmonic functions (for a list of properties of subharmonic functions, see [4]), and then, more interesting still, to exhibit the attendant mass distribution [4] for the subharmonic functions; the former will depend upon a theorem of Levin [3; 363–410], while the latter will depend upon the extension theorem of Reichelderfer and Ringenberg [5].

THEOREM (Levin). If the function $\Phi(x, y)$ is continuous with its partial derivatives of the first order in the unit circle $\mathbb{D}: x^2 + y^2 \leq 1$, then a necessary and sufficient condition that $\Phi(x, y)$ be subharmonic in \mathbb{D} is that for each oriented square S in \mathbb{D} ,

$$\int_{s} \Phi_{x}(x, y) dy - \Phi_{y}(x, y) dx \geq 0.$$

EXTENSION THEOREM (Reichelderfer and Ringenberg). Let \mathfrak{R} denote the class of all oriented closed rectangles in \mathfrak{D} . A necessary and sufficient condition that a given set function $\mu(R)$, defined on \mathfrak{R} , admit a completely additive extension to a closed range in \mathfrak{D} is that it satisfy condition \mathfrak{C} : If $r_1, r_2, \dots, r_n, \dots$ is a finite or denumerable sequence of mutually exclusive rectangles in \mathfrak{R} , and if $R_1, R_2, \dots, R_n, \dots$ is any finite or denumerable sequence of rectangles in \mathfrak{R} such that

$$\sum_n r_n \subset \sum_n R_n$$
,

then

$$\sum_{n} \mu(r_n) \leq \sum_{n} \mu(R_n).$$

The theorem we intend to establish is the following.

THEOREM. If u(x, y) and v(x, y) are continuous in D, and if

(1)
$$\int_{\mathbb{R}} u(x, y) \, dy - v(x, y) \, dx \ge 0, \qquad \int_{\mathbb{R}} u(x, y) \, dx + v(x, y) \, dy = 0$$

hold for each oriented rectangle R in D, then there exists a function $\Phi(x, y)$, subharmonic in D, such that $\Phi_x(x, y) \equiv u(x, y)$, and $\Phi_y(x, y) \equiv v(x, y)$; the mass function associated with $\Phi(x, y)$ is given by the non-negative completely additive extension of the rectangle function

(2)
$$\mu_1(R) \equiv \int_R u(x, y) \, dy - v(x, y) \, dx = \int_R \Phi_x(x, y) \, dy - \Phi_y(x, y) \, dx.$$

Received March 8, 1943.