TOPOLOGICAL GROUPS AS SUBGROUPS OF LINEAR TOPOLOGICAL SPACES

By R. C. JAMES

The concepts of boundedness, convexity, and normability of linear topological spaces can be generalized for topological Abelian groups. These concepts can be used as conditions for a topological Abelian group to be a subgroup of a linear topological space or of a Banach space. Boundedness and convexity lead to theorems on normability analogous to one given by Kolmogoroff for linear topological spaces [4]. I am indebted to Professor Michal for his encouragement and suggestions.

1. Topological groups and linear topological spaces. By a topological group, we mean an abstract group which has a Hausdorff topology [2; 228-229, (A), (B), (C), (5)] with respect to which the group operations are continuous. A topological Abelian group is a topological group whose abstract group is Abelian. A linear topological space is a linear space [1; 26] which has a Hausdorff topology with respect to which the fundamental operations x + y and ax are continuous. A rational linear topological space is a topological Abelian group T such that the product of rational numbers a and elements x of T is defined and continuous simultaneously in a and x and satisfies the postulates:

- 1. a(x + y) = ax + ay. 2. (a + b)x = ax + bx.
- 2. (a + b)x = ax + b
- 3. a(bx) = (ab)x.
- $4. \ 1 \cdot x = x.$

It can be shown that a linear topological space is a topological Abelian group and has the following properties (which hold for a rational linear topological space if a is rational):

I. If ax = 0, either x = 0 or a = 0.

II. If U is an open set and $a \neq 0$, then aU is an open set. (aU will mean the set of all ax, where $x \in U$; U^n , the set of all $x = u_1 + u_2 + \cdots + u_n$, where each u_i is in U.)

III. If U is a neighborhood of the origin, there is a neighborhood V of the origin such that $aV \subset U$ for all a satisfying $|a| \leq 1$.

2. Convexity and boundedness. Kolmogoroff [4] and Tychonoff [7] have called a neighborhood U of the origin of a linear topological space convex if ax + (1 - a)y is in U for any elements x and y of U and real number a in the

Received October 23, 1942.