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The concepts of boundedness, convexity, and normability of linear topological
spaces can be generalized for topological Abelian groups. These concepts can
be used as conditions for a topological Abelian group to be a subgroup of a
linear topological space or of a Banach space. Boundedness and convexity lead
to theorems on normability analogous to one given by Kolmogoroff for linear
topological spaces [4]. I am indebted to Professor Michal for his encouragement
and suggestions.

1. Topological groups and linear topological spaces. By a topological group,
we mean an abstract group which has a Hausdorff topology [2; 228-229, (A),
(B), (C), (5)] with respect to which the group operations are continuous. A
topological Abelian group is a topological group whose abstract group is Abelian.
A linear topological space is a linear space [1; 26] which has a Hausdorff topology
with respect to which the fundamental operations x -t- y and ax are continuous.
A rational linear topological space is a topological Abelian group T such that
the product of rational numbers a and elements x of T is defined and continuous
simultaneously in a and x and satisfies the postulates"

1. a(x y) ax ay.
2. (a b)x ax bx.
3. a(bx) (ab)x.
4.1.x=x.

It can be shown that a linear topological space is a topological Abelian group
and has the following properties (which hold for a rational linear topological
space if a is rational)"

I. Ifax O, eitherx 0ora 0.
II. If U is an open set and a 0, then aU is an open set. (aU will mean

the set of all ax, where x U; Un, the set of all x u u2 W -t- un, where
each u is in U.)

III. If U is a neighborhood of the origin, there is a neighborhood V of the
origin such that aV C U for all a satisfying al _< 1.

2. Convexity and boundedness. Kolmogoroff [4] and Tychonoff [7] have
called a neighborhood U of the origin of a linear topological space convex if
ax (1 a)y is in U for any elements x and y of U and real number a in the
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