THE BEHAVIOR OF EULER'S PRODUCT ON THE BOUNDARY OF CONVERGENCE

BY AUREL WINTNER

1. Introduction. If g(t), $0 \le t < \infty$, is integrable (L) on every bounded interval [0, T], let M(g) denote the limit of the mean-value

(1)
$$M_{T}(g) = \frac{1}{T} \int_{0}^{T} g(t) dt$$

as $T \to \infty$, provided M(g) exists as a *finite* limit.

It is known that $M(|f|^2)$ exists for $f(t) = 1/\zeta(1 + it)$, where $\zeta(s)$ is the Riemann zeta-function. The same has never been proved for the more fundamental function $f(t) = \arg \zeta(1 + it)$, that is, for the imaginary part of $\log \zeta(s)$ on the line $\sigma = 1$, where the phase $\arg \zeta(s)$ is understood to be defined for $\sigma \geq 1$ (but $s \neq 1$) by continuous variation of the initial phase $\arg \zeta(\infty + it) \equiv 0$. The appearance of additional difficulties introduced by the passage from $1/\zeta(1 + it)$ to $\arg \zeta(1 + it)$ is evident from the whole structure of the zeta-function. It will be shown in the present paper that the resulting complications can be avoided if the classical method is replaced by another approach. The principal difficulty appears to be a direct proof of lim $\sup M_T(|f|^2) < \infty$ (in fact, not even lim $\sup M_T(|f|) < \infty$ seems to have been established in the literature).

What will actually be proved is that $\log \zeta(1 + it)$ is almost periodic (B^2) . Hence, the same is true of the imaginary part of $\log \zeta(1 + it)$. This implies, of course, much more than the mere existence of $M(|f|^2)$ for $f(t) = \arg \zeta(1 + it)$.

In order to delimit the nature of the difficulties involved, the case of the logarithmic derivative, $\zeta'/\zeta(1 + it)$, will first be treated. This case can be approached directly. On the other hand, the treatment of the case of $\log \zeta(1 + it)$ or of arg $\zeta(1 + it)$ will substantially depend on a Fourier transformation of the problem.

The point is that the truth of Riemann's hypothesis is not assumed in either case. In fact, the results, along with their extensions from $\sigma = 1$ to $\sigma > \frac{1}{2}$, could readily be deduced from known consequences of Riemann's hypothesis.

Since such functions as $\zeta(1 + it)$ or $\zeta'/\zeta(1 + it)$ have non-integrable singularities at t = 0, the average, $M(g) \equiv \lim M_T(g)$, of such functions will have to be meant in the sense that the lower integration limit, t = 0, of (1) is replaced by some t = a > 0. This convention implies a corresponding proviso for the definition of almost periodicity (B^r) . Needless to say, the resulting assertions are independent of the numerical value of a.

Received February 1, 1943.