CONJUGATE HARMONIC FUNCTIONS

BY E. F. BECKENBACH

We shall say that a set of real functions

$$x_i \equiv x_i(u_1, u_2, \cdots, u_n)$$
 $(j = 1, 2, \cdots, m; m \ge n \ge 2),$

defined and continuous in a domain (non-null connected open set) D, forms a set of conjugate harmonic functions in D provided

(1)
$$x_i(u_1, u_2, \cdots, u_n)$$
 $(j = 1, 2, \cdots, m)$

is harmonic in D;

(2)
$$\sum_{i=1}^{m} \frac{\partial x_i}{\partial u_k} \frac{\partial x_i}{\partial u_l} = [\lambda(u_1, u_2, \cdots, u_n)] \delta_{k,l} \qquad (k, l = 1, 2, \cdots, n),$$

where $\delta_{k,l}$ is the Kronecker delta defined by $\delta_{k,l} = 1$ or 0 as k = l or $k \neq l$.

As indicated in (2), the function $\lambda(u_1, u_2, \dots, u_n)$ is the same for all k, l; conditions (2), which in the theory of surfaces reduce to the familiar E = G, F = 0, are necessary and sufficient conditions that the functions $x_i(u_1, u_2, \dots, u_n)$ map D conformally on an *n*-dimensional subspace of Euclidean *m*-space.

Given a real exponent γ , we define the class S_{γ} as the class of all functions $f(u_1, u_2, \dots, u_n)$ which are continuous and non-negative in D and which are such that $f^{\gamma} \operatorname{sgn} \gamma$ is subharmonic if $\gamma \neq 0$, and $\log f$ is subharmonic if $\gamma = 0$. We note that a necessary and sufficient condition that a function f be of class S_{γ} is that it be of class S_{β} for all $\beta > \gamma$.

Similarly, we define the class H_{γ} as the class of all functions $f(u_1, u_2, \dots, u_n)$ which are continuous and non-negative in D and which are such that in the part of D where f > 0, $f^{\gamma} \operatorname{sgn} \gamma$ is harmonic if $\gamma \neq 0$, and $\log f$ is harmonic if $\gamma = 0$. We note that the class H_{γ} is contained in the class S_{γ} .

The following result was obtained by Cioranesco [4].

THEOREM 1. A necessary and sufficient condition that the functions

$$x_i \equiv x_i(u_1, u_2, \cdots, u_n)$$
 $(j = 1, 2, \cdots, n; n \ge 2)_i$

defined and continuous in a domain D, be a set of conjugate harmonic functions in D is that the following conditions be satisfied:

(3)
$$x_i(u_1, u_2, \cdots, u_n)$$
 $(j = 1, 2, \cdots, n)$

is harmonic in D;

Received January 18, 1943.