# THE MAP-COLORING OF UNORIENTABLE SURFACES 

By H. S. M. Coxeter

1. Introduction. By a $m a p$ we understand a partition of an unbounded surface into $F$ simply-connected regions ("faces") by means of $E$ simple arcs ("edges") joining pairs of $V$ points ("vertices"). It is well known [13; 149] that all maps on a given surface have the same characteristic $K=V-E+F$, and that the topological properties of an unbounded surface are completely determined by the value of $K$, except that when $K$ is even the surface may be either orientable or unorientable.

A map can be specified by a combinatorial scheme which names the vertices of each face in proper cyclic order. If we can permute the names without altering the scheme as a whole, we say that the map is symmetrical: such permutations constitute its symmetry group.

A map is said to be colored if colors are assigned to its faces in such a way that any two faces with a common edge have different colors. There is evidently a number $O_{K}$ (for each even $K \leq 2$ ) such that every map on an orientable surface of characteristic $K$ can be colored with $O_{K}$ colors, while at least one map cannot be colored with fewer; in other words, $O_{K}$ colors are both sufficient and necessary. Thus the famous four color problem asks whether $O_{2}=4$ or 5 . Similarly, there is a number $U_{K}$ (for every integer $K \leq 1$ ) such that $U_{K}$ colors are sufficient and necessary for an unorientable surface of characteristic $K$.

Heawood [10; 334], [1; 236] proved that every map on an orientable surface of characteristic $K<2$ can be colored with [ $F_{K}$ ] colors, where

$$
\begin{equation*}
F_{K}=\frac{1}{2}\left(7+(49-24 K)^{\frac{1}{2}}\right) . \tag{1}
\end{equation*}
$$

As the same argument applies to an unorientable surface, this shows that

$$
O_{K} \leq F_{K}, \quad U_{K} \leq F_{K} \quad(K<2)
$$

He conjectured that $O_{K}=\left[F_{K}\right]$ in every case. Heffter [11; 492-494] has verified this for $K=0,-2,-4,-6,-8,-10$. But it is not always true that $U_{K}=\left[F_{K}\right]$; for Franklin $[8 ; 368]$ has shown that $U_{0}=6$, although $F_{0}=7$. On the other hand, this failure may be exceptional, as the equation has been verified by Tietze [17; 158] for $K=1$, by Kagno [12] for $K=-1,-2,-4$, and by Bose [2; 380] for $K=-5$. This paper fills a gap by establishing it also for $K=-3$. Moreover, the case $K=-5$ is discussed more fully, with the aid of models in Euclidean space of three or four dimensions.

Received January 2, 1943; presented to the American Mathematical Society December, 1942.

