POWER SUMS OF POLYNOMIALS IN A GALOIS FIELD

By Herbert Leonard Lee

1. Introduction. Let $G F\left(p^{n}\right)$ denote the Galois field [4; 1-70] of order p^{n}. Let

$$
M=c_{0} x^{m}+c_{1} x^{m-1}+\cdots+c_{m-1} x+c_{m}
$$

denote a polynomial in an indeterminate x, with coefficients in $G F\left(p^{n}\right)$. If $c_{0} \neq 0$, we write $\operatorname{deg} M=m$, and if $c_{0}=1$, we call M primary. In this paper we evaluate certain power sums, viz.

$$
\begin{array}{ll}
S_{m}^{k}=\sum_{\substack{\text { dog } M=m \\
M \text { primary }}} M^{k}, & R_{m}^{k}=\sum_{\substack{\operatorname{deg} M<m \\
\operatorname{aill} M \neq 0}} M^{k}, \\
\sigma_{m}^{k}=\sum_{\substack{\text { dog } M=m \\
M \text { primary }}}^{\prime} \frac{1}{M^{k}}, & \rho_{m}^{k}=\sum_{\substack{\operatorname{deg} M<m \\
\text { all } M \neq 0}} \frac{1}{M^{k}} .
\end{array}
$$

In §3 we discuss some of the conditions under which the power sums vanish. §§4-6 are devoted to the evaluation of certain power sums in which the exponent k is of a special form. In $\S 7$ we evaluate R_{m}^{k} and S_{m}^{k}, where $k=a_{m} p^{n m}+a_{m-1} p^{n(m-1)}$ $+\cdots+a_{1} p^{n}+a_{0}$, for in this case R_{m}^{k} and S_{m}^{k} are given in one term only. §8 gives the development of recursion formulas involving power sums. Finally, in $\S 9$, we show the connection between R_{m}^{k} and ρ_{m}^{k} and the complete symmetric polynomial.
2. Definitions and notation. Let [1; 141-143]

$$
\begin{equation*}
\psi_{m}(t)=\prod_{\operatorname{dog} M<m}(t-M), \quad \psi_{0}(t)=t, \tag{2.1}
\end{equation*}
$$

where t is another indeterminate, and the product extends over all polynomials (including 0) of degree less than m; we then have

$$
\psi_{m}(t)=\sum_{i=0}^{m}(-1)^{m-i}\left[\begin{array}{c}
m \tag{2.2}\\
j
\end{array}\right] t^{n^{n i}}
$$

where

$$
\left[\begin{array}{c}
m \tag{2.3}\\
j
\end{array}\right]=\frac{F_{m}}{F_{i} L_{m-i}^{p^{n_{i}}}}, \quad\left[\begin{array}{c}
m \\
0
\end{array}\right]=\frac{F_{m}}{L_{m}}, \quad\left[\begin{array}{c}
m \\
m
\end{array}\right]=1
$$

Received November 15, 1942. The writer is indebted to Professor Leonard Carlitz for encouragement and assistance in writing this paper, which was offered as a dissertation for the Ph.D. degree at Duke University.

