THE GENERAL TYPE OF SINGULARITY OF A SET OF $2 n-1$ SMOOTH FUNCTIONS OF n VARIABLES

By Hassler Whitney

1. Introduction. Let a region R of n-space E^{n}, or more generally, of a differentiable n-manifold, be mapped differentiably into m-space E^{m}. If $m \geq 2 n$, it is always possible [1; 818], [3], by a slight alteration of the mapping function f (letting also any finite number of derivatives change arbitrarily slightly), to obtain a mapping f^{*} which is everywhere regular. That is, for any p in R, and any set of independent vectors u_{1}, \cdots, u_{n} in R at p, f^{*} carries these vectors into independent vectors. Here, vector equals the vector in "tangent space" equals the differential. As a consequence, some neighborhood U of p is mapped by f in a one-one way. The object of this paper is to determine what can be obtained by slight alterations of f in case $m=2 n-1$. It turns out that any singularities may be made into a fixed kind. (It will be shown in other papers that any smooth n-manifold may be imbedded in ($2 n$)-space, and may be immersed (self-intersections allowed) in ($2 n-1$)-space.)

There are two main theorems in the paper, roughly:
(a) We may alter f arbitrarily slightly, forming f^{*}, for which the singular points (points where f^{*} is not regular) are isolated, and such that a certain condition (C) below holds at each singular point. (The self-intersection may also be made simple; cf. [3; 655, (D)].)
(b) Let f^{*} satisfy the condition mentioned. Then for any singular point p, we may choose coördinate systems x_{1}, \cdots, x_{n} in a neighborhood of p and y_{1}, $\cdots, y_{2 n-1}$ in a neighborhood of $f(p)$ such that f^{*} is given exactly by the equations (4.2). Here, f^{*} must have many derivatives.

Remark. As a consequence, there is a slight deformation of $E^{2 n-1}$ which carries $f(U)$ (U a neighborhood of p) into the set of points given by (4.2).

The transformations in (b) may lower the class of f^{*} considerably; but if f^{*} is of class C^{∞}, or analytic, the transformations will be also. The condition mentioned in (a) is the following:
(C) There is a direction through p with the following properties: $\left(\mathrm{C}_{1}\right) f^{*}$ maps any vector in this direction into the null vector in $E^{2 n-1}$, but maps any other vector at p into a non-null vector. $\left(\mathrm{C}_{2}\right)$ If $g\left(p^{\prime}\right)$ is the derivative of $f^{*}\left(p^{\prime}\right)$ in the direction given above, for p^{\prime} near p, then there is no vector in $E^{2 n-1}$ which is the image both of a vector under f^{*} and a vector $\neq 0$ under g, both at p.

We may phrase the second condition as follows:
(C_{2}^{\prime}) Suppose a coördinate system is chosen in which the given vector is in the x_{1}-direction. Then

Received July 28, 1942; presented to the American Mathematical Society September 8, 1942.

