THE GENERAL TYPE OF SINGULARITY OF A SET OF 2n - 1 SMOOTH FUNCTIONS OF n VARIABLES

By HASSLER WHITNEY

1. Introduction. Let a region R of n-space E^n , or more generally, of a differentiable n-manifold, be mapped differentiably into m-space E^m . If $m \ge 2n$, it is always possible [1; 818], [3], by a slight alteration of the mapping function f(letting also any finite number of derivatives change arbitrarily slightly), to obtain a mapping f^* which is everywhere regular. That is, for any p in R, and any set of independent vectors u_1, \dots, u_n in R at p, f^* carries these vectors into independent vectors. Here, vector equals the vector in "tangent space" equals the differential. As a consequence, some neighborhood U of p is mapped by f in a one-one way. The object of this paper is to determine what can be obtained by slight alterations of f in case m = 2n - 1. It turns out that any singularities may be made into a fixed kind. (It will be shown in other papers that any smooth n-manifold may be imbedded in (2n)-space, and may be immersed (self-intersections allowed) in (2n - 1)-space.)

There are two main theorems in the paper, roughly:

(a) We may alter f arbitrarily slightly, forming f^* , for which the singular points (points where f^* is not regular) are isolated, and such that a certain condition (C) below holds at each singular point. (The self-intersection may also be made simple; cf. [3; 655, (D)].)

(b) Let f^* satisfy the condition mentioned. Then for any singular point p, we may choose coördinate systems x_1, \dots, x_n in a neighborhood of p and y_1, \dots, y_{2n-1} in a neighborhood of f(p) such that f^* is given exactly by the equations (4.2). Here, f^* must have many derivatives.

Remark. As a consequence, there is a slight deformation of E^{2n-1} which carries f(U) (U a neighborhood of p) into the set of points given by (4.2).

The transformations in (b) may lower the class of f^* considerably; but if f^* is of class C^{∞} , or analytic, the transformations will be also. The condition mentioned in (a) is the following:

(C) There is a direction through p with the following properties: (C₁) f^* maps any vector in this direction into the null vector in E^{2n-1} , but maps any other vector at p into a non-null vector. (C₂) If g(p') is the derivative of $f^*(p')$ in the direction given above, for p' near p, then there is no vector in E^{2n-1} which is the image both of a vector under f^* and a vector $\neq 0$ under g, both at p.

We may phrase the second condition as follows:

 (C'_2) Suppose a coördinate system is chosen in which the given vector is in the x_1 -direction. Then

Received July 28, 1942; presented to the American Mathematical Society September 8, 1942.