DIFFERENTIABLE EVEN FUNCTIONS

By Hassler Whitney

An even function f(x) = f(-x) (defined in a neighborhood of the origin) can be expressed as a function $g(x^2)$; g(u) is determined for $u \ge 0$, but not for u < 0. We wish to show that g may be defined for u < 0 also, so that it has roughly half as many derivatives as f. A similar result for odd functions is given.

THEOREM 1. An even function f(x) may be written as $g(x^2)$. If f is analytic, of class C^{∞} or of class C^{2s} , g may be made analytic, of class C^{∞} or of class C^{s} , respectively.

If $f(x) = \sum_{i=1}^{n} a_i x^i$ is even and analytic, then $a_i = 0$ for i odd, and we may set $g(u) = \sum_{i=1}^{n} a_{ii} u^i$, which is analytic.

Suppose f is even and of class C^{2s} . Then Taylor's formula gives

(1)
$$f(x) = a_0 + a_1 x^2 + \cdots + a_{s-1} x^{2s-2} + x^{2s} \phi(x).$$

By Theorem 1 of [3], ϕ is even and continuous, and of class C^{2s} for $x \neq 0$, and

(2)
$$\lim_{x \to 0} x^k \phi^{(k)}(x) = 0 \qquad (k = 1, \dots, 2s).$$

Set $\psi(u) = \psi(-u) = \phi(u^{\frac{1}{2}})$, and

(3)
$$g(u) = a_0 + a_1 u + \cdots + a_{s-1} u^{s-1} + u^s \psi(u).$$

Then $g(x^2) = f(x)$. To show that g is of class C^s , it is sufficient to show, by Theorem 2 of [3], that

(4)
$$\lim_{n\to\infty} u^k \psi^{(k)}(u) \qquad (k=0, \dots, s)$$

exists.

If we differentiate $\psi(x^2) = \phi(x)$ (x > 0), a simple proof by induction shows that, for some constants α_{ki} ,

(5)
$$\phi^{(k)}(x) = \sum_{1 \le i \le \frac{1}{k}} \alpha_{ki} x^{k-2i} \psi^{(k-i)}(x^2) + 2^k x^k \psi^{(k)}(x^2).$$

Solving these equations in succession gives, for some β_{ki} ,

(6)
$$2^{k}x^{k}\psi^{(k)}(x^{2}) = \phi^{(k)}(x) + \sum_{1 \leq i \leq k-1} \beta_{ki}x^{-i}\phi^{(k-i)}(x).$$

Hence,

$$x^{2k}\psi^{(k)}(x^2) = \sum_{0 \le i \le k-1} \beta'_{ki}x^{k-i}\phi^{(k-i)}(x),$$

and (4) for x > 0 follows from (2). Since $\psi(-u) = \psi(u)$, the theorem is proved for this case.

Received July 28, 1942; presented to the American Mathematical Society September 8, 1942.