CLASSES OF RESTRICTED LIE ALGEBRAS OF CHARACTERISTIC p, II

By N. Jacobson

1. The class of algebras considered in this paper is obtained as follows: Let Φ be a field of characteristic p and let $\mathfrak{A} = \Phi(x_1, \dots, x_m)$ be the commutative associative algebra with the basis $x_1^{\alpha_1} \cdots x_m^{\alpha_m}$, $0 \leq \alpha_i < p$, where $x_i^0 = 1$ and $x_i^p = \xi_i$ is in Φ . Let $\mathfrak{L} = \mathfrak{D}(\mathfrak{A})$ be the restricted Lie algebra of derivations of \mathfrak{A} , i.e., the set of transformations d of \mathfrak{A} that satisfy

$$(x + y)d = xd + yd,$$
 $(x\alpha)d = (xd)\alpha,$ $(xy)d = x(yd) + (xd)y$

for x, y in \mathfrak{A} and α in Φ . The fundamental operations in \mathfrak{A} are addition, scalar multiplication, commutation, [d, e] = de - ed, and p-exponentiation, d^p . (We shall show in §9 that our results are valid also when we drop the operation $d \to d^p$ and consider \mathfrak{A} as a Lie algebra in the ordinary sense.) The case in which \mathfrak{A} is a field has been considered by the author in a previous paper [3] and the algebra \mathfrak{A} obtained when m = 1 and $\xi = 1$ is equivalent to one discovered by Witt and studied by Zassenhaus [8] and by Ho-Jui Chang [2]. We shall show that for any m and ξ_i , \mathfrak{A} is normal simple unless m = 1, p = 2, and we obtain the derivation algebra of \mathfrak{A} . The automorphisms of \mathfrak{A} and conditions that two algebras \mathfrak{A}_1 and \mathfrak{A}_2 be isomorphic are given for $p \geq 5$.

Since the x's generate \mathfrak{A} , any derivation d is determined by its effect on the x_i . Moreover, we may choose elements y_1, \dots, y_m arbitrarily in \mathfrak{A} and obtain a derivation d such that $x_i d = y_i$, see [3; 217]. Thus, we have a 1-1 correspondence between the elements of \mathfrak{A} and vectors (y_1, \dots, y_m) , where y_i ranges over \mathfrak{A} . If $d \to (y_1, \dots, y_m)$ and $c \to (z_1, \dots, z_m)$, then $d + c \to (y_1 + z_1, \dots, y_m + z_m)$ and $d\alpha \to (y_1\alpha, \dots, y_m\alpha)$, α in Φ . Hence, the correspondence is linear and so the dimensionality of \mathfrak{A} over Φ is mp^m . We note also that $[d, c] \to (w_i)$, where

$$w_i = \sum_k \left(\frac{\partial y_i}{\partial x_k} z_k - \frac{\partial z_i}{\partial x_k} y_k
ight).$$

An explicit formula for the vector corresponding to d^p would be rather difficult to write and so we shall be content to note that the component y_{pi} of this vector is obtained by the recursion formula

$$y_{pi} = \sum_{k_1, \dots, k_{p-1}} \left(\frac{\partial}{\partial x_{k_{p-1}}} \cdots \left(\frac{\partial}{\partial x_{k_2}} \left(\frac{\partial y_i}{\partial x_{k_1}} y_{k_1} \right) y_{k_2} \right) \cdots \right) y_{k_{p-1}} .$$

Received July 15, 1942; presented to the American Mathematical Society, April 3, 1942. Part I appeared in [5]; we follow the notation and terminology of that paper.