CLASSES OF RESTRICTED LIE ALGEBRAS OF CHARACTERISTIC p, II

By N. Jacobson

1. The class of algebras considered in this paper is obtained as follows: Let Φ be a field of characteristic p and let $\mathfrak{A}=\Phi\left(x_{1}, \cdots, x_{m}\right)$ be the commutative associative algebra with the basis $x_{1}^{\alpha_{1}} \cdots x_{m}^{\alpha_{m}}, 0 \leq \alpha_{i}<p$, where $x_{i}^{0}=1$ and $x_{i}^{p}=\xi_{i}$ is in Φ. Let $\mathbb{R}=\mathfrak{D}(\mathfrak{H})$ be the restricted Lie algebra of derivations of \mathfrak{A}, i.e., the set of transformations d of \mathfrak{A} that satisfy

$$
(x+y) d=x d+y d, \quad(x \alpha) d=(x d) \alpha, \quad(x y) d=x(y d)+(x d) y
$$

for x, y in \mathfrak{A} and α in Φ. The fundamental operations in \mathbb{Z} are addition, scalar multiplication, commutation, $[d, e]=d e-e d$, and p-exponentiation, d^{p}. (We shall show in §9 that our results are valid also when we drop the operation $d \rightarrow d^{p}$ and consider Ω as a Lie algebra in the ordinary sense.) The case in which \mathfrak{A} is a field has been considered by the author in a previous paper [3] and the algebra \mathbb{Z} obtained when $m=1$ and $\xi=1$ is equivalent to one discovered by Witt and studied by Zassenhaus [8] and by Ho-Jui Chang [2]. We shall show that for any m and ξ_{i}, Ω is normal simple unless $m=1, p=2$, and we obtain the derivation algebra of \mathbb{R}. The automorphisms of \mathbb{R} and conditions that two algebras ℓ_{1} and \mathfrak{R}_{2} be isomorphic are given for $p \geq 5$.

Since the x 's generate \mathfrak{N}, any derivation d is determined by its effect on the x_{i}. Moreover, we may choose elements y_{1}, \cdots, y_{m} arbitrarily in \mathfrak{A} and obtain a derivation d such that $x_{i} d=y_{i}$, see [3;217]. Thus, we have a 1-1 correspondence between the elements of $\left\{\right.$ and vectors $\left(y_{1}, \cdots, y_{m}\right)$, where y_{i} ranges over Y. If $d \rightarrow\left(y_{1}, \cdots, y_{m}\right)$ and $c \rightarrow\left(z_{1}, \cdots, z_{m}\right)$, then $d+c \rightarrow\left(y_{1}+z_{1}, \cdots\right.$, $\left.y_{m}+z_{m}\right)$ and $d \alpha \rightarrow\left(y_{1} \alpha, \cdots, y_{m} \alpha\right), \alpha$ in Φ. Hence, the correspondence is linear and so the dimensionality of \mathfrak{Z} over Φ is $m p^{m}$. We note also that $[d, c] \rightarrow\left(w_{i}\right)$, where

$$
w_{i}=\sum_{k}\left(\frac{\partial y_{i}}{\partial x_{k}} z_{k}-\frac{\partial z_{i}}{\partial x_{k}} y_{k}\right) .
$$

An explicit formula for the vector corresponding to d^{p} would be rather difficult to write and so we shall be content to note that the component $y_{p i}$ of this vector is obtained by the recursion formula

$$
y_{p i}=\sum_{k_{1}, \cdots, k_{p-1}}\left(\frac{\partial}{\partial x_{k_{p-1}}} \cdots\left(\frac{\partial}{\partial x_{k_{2}}}\left(\frac{\partial y_{i}}{\partial x_{k_{1}}} y_{k_{1}}\right) y_{k_{2}}\right) \cdots\right) y_{k_{p-1}} .
$$

[^0]
[^0]: Received July 15, 1942; presented to the American Mathematical Society, April 3, 1942. Part I appeared in [5]; we follow the notation and terminology of that paper.

