THE APPROXIMATION OF ARBITRARY BIUNIQUE TRANSFORMATIONS

By Casper Goffman

In this paper, we shall show that every biunique correspondence of a square into itself may be approximated, in a certain sense, by a correspondence which is biunique and bicontinuous, i.e., by a homeomorphism. This theorem may be regarded as a sequel to one given by Franklin and Wiener [3] on the approximation of homeomorphisms by analytic transformations. It bears a relationship to various theorems in the literature on arbitrary real functions [1], [2], [5] similar to that which the result of Franklin and Wiener bears to the theorem of Weierstrass on the approximation of continuous functions by polynomials.

Definition. A biunique correspondence κ of a closed square S into itself will, for a given positive ϵ, be said to be ϵ-approximated by another identicallyconditioned correspondence κ^{*} if there exist two sets A and B in S, each of relative exterior measure greater than $1-\epsilon$ with respect to S, such that for every point p of A the distance between p^{1} and p_{1} is less than ϵ, and for every point p of B the distance between p^{-1} and p_{-1} is less than ϵ, where p^{1}, p^{-1}, p_{1} and p_{-1} are the respective mates of p according to $\kappa, \kappa^{-1}, \kappa^{*}$, and $\kappa^{*-1} ;$ and $\kappa^{-1}, \kappa^{*-1}$ are the respective inverses of κ, κ^{*}.

We now prove the result we have in mind:
Theorem I. Every biunique correspondence к of a square S into itself may, for every $\epsilon>0$, be ϵ-approximated by a homeomorphism.

Proof. We assume, as we may, that S is the unit square. Subdivide S into n squares $S_{i}, i=1, \cdots, n$, each of diagonal length less than ϵ. If a point is on the boundary of two or more of the S_{i}, we assign it, at random, to just one of these squares; as a consequence, every point of S belongs to just one of the S_{i}. The image of S_{i}, by κ, is a point set T_{i}, and by κ^{-1}, a point set T_{i}^{-1}. Since κ is a biunique correspondence, the n sets T_{i} constitute a disjoint subdivision of S. The set T_{1}, except for a subset E_{1} of arbitrarily small exterior measure, say $<\epsilon / 2 n$, may be enclosed in the sum R_{1} of a finite number $R_{11}, R_{12}, \cdots, R_{1 \mu_{1}}$ of non-overlapping, non-abutting, closed rectangles, such that the relative exterior measure of T_{1} in R_{1} exceeds $1-\frac{1}{2} \epsilon$. The set of points of T_{2} not in R_{1} may, except for a subset E_{2} of exterior measure $<\epsilon / 2 n$, be enclosed in the sum R_{2} of a finite number of closed rectangles $R_{21}, R_{22}, \cdots, R_{2 \mu_{2}}$, which neither overlap nor abut one another nor any component of R_{1}, such that the relative exterior measure of T_{2} in R_{2} exceeds $1-\frac{1}{2} \epsilon$. Continuing as indicated, we define R_{3} to be a sum of closed rectangles $R_{31}, R_{32}, \cdots, R_{3 \mu_{3}}$, which neither overlap nor abut one another nor any component rectangle of $R_{1}+R_{2}, R_{3}$

Received August 19, 1942.

