SOME GEOMETRIC INEQUALITIES

By Willy Feller

1. The problem treated in this note was originally formulated by R. Salem and D. C. Spencer in connection with a number-theoretical investigation. Consider a plane domain Γ contained in the unit circle; suppose that the intersection of Γ with any straight line has a measure not exceeding a fixed constant $\delta<1$. What can be said about the measure M of Γ ? If Γ is convex, its area is obviously not greater than $\delta^{2} \pi$. It is less trivial that, for a convex domain Γ,

$$
\begin{equation*}
M \leq \frac{1}{4} \delta^{2} \pi \tag{1}
\end{equation*}
$$

and that the sign of equality holds only if Γ is the interior of a circle; this result was proved by different methods by Bieberbach [1] and Kubota [3]; see also [2], particularly §§44, 54.

It has been widely conjectured that in general $M=O\left(\delta^{2}\right)$ as $\delta \rightarrow 0$, or at least that $M=o(\delta)$. Now a simple application of Fubini's theorem shows immediately that necessarily

$$
\begin{equation*}
M<2 \delta \tag{2}
\end{equation*}
$$

It will be proved in the sequel that (2) is the best result. In fact, we shall construct a domain Γ (consisting of a finite number of annuli) such that its intersection with any straight line of the plane has a total length not exceeding δ, whereas for its area M we have

$$
\begin{equation*}
M>2 \delta\left(1-\delta^{2} \pi^{-2}-\epsilon\right) \tag{3}
\end{equation*}
$$

where $\epsilon>0$ is arbitrarily small. Thus 2δ is the best asymptotic estimate for the maximum of the area. The $1 / \pi^{2}$ which multiplies δ^{2} is, of course, not the best possible. Our construction can easily be refined, but this seems to be of no interest.

In $\S 4$ the above mentioned theorem of Bieberbach and Kubota will be proved in a new simple way which will make the result appear almost trivial. Actually the new proof is even slightly more general.

The generalization of the last result to n dimensions is straightforward. In order to solve the problem of the best estimate in the general case and in n dimensions, we shall (§5) formulate, and solve, a more general and purely analytic problem; it will be seen that our problem actually reduces to an inequality between two integrals.
2. Let $0<\delta<1$ be given and denote by N an arbitrarily large but fixed integer. Put

$$
\begin{equation*}
N^{\prime}=\left[N\left(1-\delta^{2} \pi^{-2}\right)^{\frac{1}{2}}\right] \tag{4}
\end{equation*}
$$

Received June 22, 1942.

