THE GROWTH OF SOLUTIONS OF A DIFFERENTIAL EQUATION

By Mary L. Boas, R. P. Boas, Jr. and Norman Levinson

It has been shown by D. Caligo [1] that if A(x) is continuous in $0 \le x < \infty$ and $A(x) = O(x^{-2-\epsilon})$ as $x \to \infty$, with $\epsilon > 0$, then for any solution y(x) of y''(x) + A(x)y(x) = 0, $\lim_{x \to \infty} y'(x)$ exists. It follows at once (e.g., by l'Hospital's rule) that y(x)/x has the same limit.

Here we shall give a short proof of a somewhat more general result (Theorem 1), and then prove a still more extensive result (Theorem 2).

1. Theorem 1. If A(x) and B(x) are continuous in $0 \le x < \infty$, if

and if

exists, then for any solution y(x) of

(1.2)
$$y''(x) + A(x)y(x) = B(x),$$

(1.3)
$$\lim_{x \to \infty} y'(x) \text{ exists.}$$

In the proofs of Theorems 1 and 2 we require the following lemma.

LEMMA. If f(x) is continuous in $0 \le x < \infty$, if M(x) denotes the maximum of |f(t)| in $0 \le t \le x$, and if for some positive numbers α and x_0

$$|f(x)| \le \alpha + \frac{1}{2}M(x) \qquad (x \ge x_0),$$

then f(x) is bounded in $0 \le x < \infty$.

For the proof, we suppose f(x) unbounded, and let λ be a number larger than both 2α and $M(x_0)$. Let x_1 be the greatest lower bound of numbers x such that $|f(x)| \geq \lambda$; such numbers exist because f(x) is unbounded. Since f(x) is continuous, $f(x_1) = \lambda$; since $|f(x)| < \lambda$ for $x < x_1$, $M(x_1) = \lambda$; since $M(x_0) < \lambda$, $x_1 > x_0$. From (1.4) with $x = x_1$ we now have $|f(x)| \leq \alpha + \frac{1}{2}\lambda < \lambda$, which is a contradiction.

Received April 23, 1942; in revised form July 24, 1942.