THE SINGULARITY S_{1}^{m} OF A PLANE CURVE

By Su-Cheng Chang

1. By a singularity S_{1}^{m} of a plane curve we mean the point at which the tangent to the curve has a contact of order m with the curve. If this point is taken for the origin $O(0,0,1)$ and the tangent for $y=0$, then the expansions of the curve in the neighborhood of O become

$$
\begin{equation*}
x=s \sum_{0}^{\infty} a_{\nu} s^{\nu}, \quad y=s^{m} \sum_{0}^{\infty} b_{\nu} s^{\nu}, \quad z=1+\sum_{0}^{\infty} c_{\nu} s^{\nu}, \quad a_{0} b_{0} \neq 0 . \tag{1}
\end{equation*}
$$

In particular, when $m=3$, the singularity which is a point of inflexion has been studied by E. Bompiani [1] and the author [2]. It is B. Su [4], [5] who generalizes Bompiani's osculants to a curve with a representable singularity of high order. In a recent paper [3] we have studied the singularity S_{1}^{4} in detail and obtain the canonical expansions of two species of S_{1}^{4} that had been classified projectively.
It is natural to extend our method of representing the neighborhood of various orders of an S_{1}^{4} to the study of an $S_{1}^{m}(m>4)$. Here we investigate only the representable singularity considered by Su , namely, the singularity for which the invariant point $O_{2 m}$ exists, and give a geometrical interpretation of the conditions for a representable S_{1}^{m}, as these have been derived analytically by Su .
There are other covariant figures, besides $O_{m+1}, l_{2 m-1}$ and $O_{2 m}$, determined by the neighborhoods of high orders of a representable S_{1}^{m}. A formulation of these elements as well as a supplement to the canonical expansion of Su for two species of a representable S_{1}^{m} forms the main object of this note.
2. Suppose that a curve C has a singular point S_{1}^{m} at $O(0,0,1)$, so that the expansion can be written in the form (1). In what follows we shall utilize an algebraic curve C_{m} of order m having a node, a singular point S_{1}^{m}, and an $(m-2)$ ple point with coincident tangent. Let $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ be the ($m-2$)-ple point and the node of C_{m}, respectively, and let

$$
\frac{x_{1} y-y_{1} x}{y_{1}}+\rho \frac{\omega_{1} x+\omega_{2} y+\omega_{3} z}{y_{1} y_{2}}=0
$$

be the equation of the common tangent of C_{m} at P_{1}; the equation of C_{m}, which has a contact of order m with C at O, can be written as

$$
y^{2}\left(\frac{x_{1} y-y_{1} x}{y_{1}}+\rho \frac{\omega_{1} x+\omega_{2} y+\omega_{3} z}{y_{1} y_{2}}\right)^{m-2}-2 \frac{y_{1} y_{2}}{\omega_{3}} y\left(\frac{x_{1} y-y_{1} x}{y_{1}}\right)^{m-1}
$$

Received April 22, 1942.

