THE SINGULARITY S_1^m OF A PLANE CURVE

By SU-CHENG CHANG

1. By a singularity S_1^m of a plane curve we mean the point at which the tangent to the curve has a contact of order m with the curve. If this point is taken for the origin O(0, 0, 1) and the tangent for y = 0, then the expansions of the curve in the neighborhood of O become

(1)
$$x = s \sum_{0}^{\infty} a_{r} s^{r}, \quad y = s^{m} \sum_{0}^{\infty} b_{r} s^{r}, \quad z = 1 + \sum_{0}^{\infty} c_{r} s^{r}, \quad a_{0} b_{0} \neq 0.$$

In particular, when m = 3, the singularity which is a point of inflexion has been studied by E. Bompiani [1] and the author [2]. It is B. Su [4], [5] who generalizes Bompiani's osculants to a curve with a representable singularity of high order. In a recent paper [3] we have studied the singularity S_1^4 in detail and obtain the canonical expansions of two species of S_1^4 that had been classified projectively.

It is natural to extend our method of representing the neighborhood of various orders of an S_1^4 to the study of an S_1^m (m > 4). Here we investigate only the representable singularity considered by Su, namely, the singularity for which the invariant point O_{2m} exists, and give a geometrical interpretation of the conditions for a representable S_1^m , as these have been derived analytically by Su.

There are other covariant figures, besides O_{m+1} , l_{2m-1} and O_{2m} , determined by the neighborhoods of high orders of a representable S_1^m . A formulation of these elements as well as a supplement to the canonical expansion of Su for two species of a representable S_1^m forms the main object of this note.

2. Suppose that a curve C has a singular point S_1^m at O(0, 0, 1), so that the expansion can be written in the form (1). In what follows we shall utilize an algebraic curve C_m of order m having a node, a singular point S_1^m , and an (m-2)-ple point with coincident tangent. Let $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ be the (m-2)-ple point and the node of C_m , respectively, and let

$$\frac{x_1y - y_1x}{y_1} + \rho \, \frac{\omega_1 x + \omega_2 y + \omega_3 z}{y_1 y_2} = 0$$

be the equation of the common tangent of C_m at P_1 ; the equation of C_m , which has a contact of order m with C at O, can be written as

$$y^2 igg(rac{x_1y - y_1x}{y_1} +
ho \, rac{\omega_1x + \omega_2y + \omega_3z}{y_1y_2} igg)^{m-2} - 2 \, rac{y_1y_2}{\omega_3} \, y \, igg(rac{x_1y - y_1x}{y_1} igg)^{m-1}$$

Received April 22, 1942.