THE CALCULUS OF VARIATIONS IN ABSTRACT SPACES

By H. H. Goldstine

The classical non-parametric problem of the calculus of variations deals with arcs defined by functions $y_{p}(x)(p=1,2, \cdots, n)$. In the present paper we allow the parameter p to range over a quite arbitrary set \mathfrak{P}, and seek conditions that an arc $y_{p}(x)$ render an integral of the form

$$
I=\int_{x_{1}}^{x_{2}} f\left[x, y(x), y^{\prime}(x)\right] d x
$$

a minimum in a class of admissible arcs. It is shown that this more general problem has a theory as complete as that of the classical problem. In a subsequent paper the author will take up the problem of Bolza in this general environment. In the first six sections, analogues of the familiar four necessary conditions are obtained. In $\S 7$ the sufficiency proofs are made, and in $\S 8$ the relation beteen conjugate points and the positiveness of the second variation is discussed.

1. Formulation of the problem. We shall use the notation \mathfrak{R} to represent the set of real numbers, \mathfrak{B} an arbitrary class of elements p, and \mathfrak{B}, an arbitrary Banach space of functions v on \mathfrak{B} to \mathfrak{R}. It will be supposed that $(\mathfrak{R}, \mathfrak{B}, \mathfrak{B})_{0}$ is a region of the composite space $(\mathfrak{R}, \mathfrak{B}, \mathfrak{B})$ of sets (r, v, w) and that f on $(\mathfrak{R}, \mathfrak{B}, \mathfrak{B})_{\text {o }}$ to \mathfrak{R} is a function of class $C^{\text {iv }}$ uniformly on $(\mathfrak{R}, \mathfrak{B}, \mathfrak{B})_{0}$. See [4], [5], [8]. An admissible arc $y(x)$ is a continuous function y on $\left(x_{1}, x_{2}\right)$ to \mathfrak{B} which consists of a finite number of pieces on each of which $y^{\prime}(x) \equiv \delta_{x} y(x ; 1)$ exists and is continuous [5; 164] and such that each set $\left(x, y(x), y^{\prime}(x)\right)$ is in the fundamental region $(\mathfrak{\Re}, \mathfrak{B}, \mathfrak{B})_{0}$. An admissible variation is a function on an interval $\left(x_{1}, x_{2}\right)$ having the continuity and differentiability properties of an admissible arc.

Our problem may then be formulated as that of finding in the class of admissible arcs joining two fixed points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ one which minimizes the integral

$$
\begin{equation*}
I(C)=\int_{x_{1}}^{x_{2}} f\left[x, y(x), y^{\prime}(x)\right] d x \tag{1.1}
\end{equation*}
$$

To carry through our analysis we shall suppose that there exists a mapping ($\nu_{p} \mid \boldsymbol{p} \mathfrak{\varepsilon}$) of \mathfrak{P} onto a bounded subset \mathfrak{B}_{1} of \mathfrak{B} such that the linear extension of \mathfrak{B}_{1} is dense in \mathfrak{B}, the limits being taken in the Moore-Smith sense; i.e., to each v in \mathfrak{B} there corresponds a set of real numbers $a_{p \tau}$, where τ is a finite subset of

[^0]
[^0]: Received April 20, 1942. Presented to the American Mathematical Society, April 11, 1941, under the title The parametric problems of the calculus of variations in gencral analysis.

