THE DOUBLE- N_n CONFIGURATION

BY ARTHUR B. COBLE

1. Introduction. We are concerned initially only with the double- N_n configuration defined by a White [7] surface, a configuration in the linear space [n + 1] which consists of N_n lines, l_i , and of N_n spaces [n - 1], λ_j , such that l_i and λ_j are incident if and only if $i \neq j$ $(i, j = 1, \dots, N_n)$, where N_n is the binomial coefficient (n + 2; 2). In conclusion, however, we raise the question as to whether there may not well be configurations of this sort more general than those which define, and are defined by, a White surface.

The White surface, W_n , in [n + 1] is the map of the plane by the linear system of curves of order n + 1 on a generic set, $P_{N_n}^2$, of points p_1, \dots, p_{N_n} of the plane. It has the order $(n + 1)^2 - N_n = N_{n-1}$. The directions about a point p_i , say p_i^* , map into points on a line l_i of the configuration CW_n under discussion. Let C_j be the curve of order n on all of the points of $P_{N_n}^2$ except p_j . Since $P_{N_n}^2$ is generic, the curves C_j are all distinct and generic. A particular curve C_j maps into a curve k_j in an [n - 1] of order N_{n-2} which crosses each of the lines l_i ($i \neq j$), since C_j goes through p_i with some definite direction. Let λ_j be the [n - 1] in which k_j lies. Then λ_j also cuts l_i if $i \neq j$. We thus obtain from $P_{N_n}^2$ the double- N_n configuration of the type we will call CW_n . The configuration itself, apart from the W_n which defines it, is formally self-dual. The lines and [n - 1]'s are dual in [n + 1]. The non-incidence of l_i and λ_i imply that they have neither a [0] nor a [n] in common. The incidence of l_i and λ_j ($j \neq i$) imply that they have a point m_{ij} in common and a prime μ_{ij} in common.

The first instance for n = 1, $N_n = 3$ is the figure of three lines l_1 , l_2 , l_3 in the plane W_1 and three points λ_1 , λ_2 , λ_3 , each point on two of the lines, i.e., a plane triangle. The mapping mentioned above by conics on P_3^2 is a quadratic transformation from the plane of P_3^2 to W_1 . In this case the CW_1 has no geometric interest.

The second instance for n = 2, $N_n = 6$ is the figure of six skew lines l_1, \dots, l_6 on a cubic surface W_2 in [3] and the six lines $\lambda_1, \dots, \lambda_6$, which with l_1, \dots, l_6 form a "double-six" on the surface. This figure has two significant properties for which we use the terms *descriptively self-dual* and *intrinsically self-dual* with the following meanings. A formally self-dual configuration is descriptively self-dual if for every figure constructed from its parts there exists a dual figure dually constructed from its dual parts. A descriptively self-dual configuration is intrinsically self-dual if there exists a correlation which transforms each part into its dual part. Naturally the formal, descriptive, and intrinsic

Received March 24, 1942. This and the following article present material which was reported in a retiring address delivered at the Dallas meeting of the American Association for the Advancement of Science.