THE DISTRIBUTION OF PRIMES

By Aurel Wintner

1. Simple prime factors. If $f(n)$ is a function of the positive integer n, let f_{t} denote the set of the solutions n of $f(n)=t$, and let $f_{t}(x)$ be the number of those elements of f_{t} which are less than x.

Thus, if $f(n)$ is the number of distinct primes dividing n or is 0 according as n is or is not square-free, then n is in f_{0} if and only if it is not square-free so that $f_{0}(x) \sim\left(1-\zeta(2)^{-1}\right) x$ as $x \rightarrow \infty$. On the other hand, if $m>0$, then $f_{m}(x)$ is the number of those integers n less than x which are composed of exactly m distinct prime factors, a number usually denoted by $\pi_{m}(x)$. Apparently, it was observed already by Gauss ${ }^{1}$ that the prime number theorem, i.e., $\pi_{1}(x) \sim$ $x(\log x)^{-1}$, implies, for every fixed $m(=1,2, \cdots)$, the asymptotic relation

$$
\begin{equation*}
\pi_{m}(x) \sim L_{m}(x) \tag{1}
\end{equation*}
$$

where

$$
L_{m}(x)=\frac{x(\log x)^{-1}(\log \log x)^{m-1}}{(m-1)!}
$$

Thus $L_{1}(x)+L_{2}(x)+\cdots \equiv x$, although

$$
\pi_{1}(x)+\pi_{2}(x)+\cdots \equiv[x]-f_{0}(x) \sim x / \zeta(2)
$$

The latter anomaly presents itself also in case of the function $f(n)=\theta(n)$ which plays a central rôle in the following considerations and represents the number of simple prime factors of n (for instance, $\theta(15)=2, \theta(60)=2$, $\theta(24)=1$). Clearly, there exists for every n exactly one m for which the set θ_{m} contains n so that $\theta_{1}(x)+\theta_{2}(x)+\cdots \equiv[x] \sim x$. However, for every fixed m,

$$
\begin{equation*}
\theta_{m}(x) \sim \text { const. } L_{m}(x) \tag{2}
\end{equation*}
$$

where

$$
\text { const. }=\frac{\zeta(2) \zeta(3)}{\zeta(6)}
$$

In fact, if m is fixed, an n is in θ_{m} if and only if $n=p_{1} \cdots p_{m} j$ holds for m distinct primes p_{1}, \cdots, p_{m} and for a j having only multiple prime factors each of which is distinct from p_{1}, \cdots, p_{m}. Since $\pi_{m}(x)$ is the number of those integers less than x which are of the form $p_{1} \cdots p_{m}$, it follows that, in order to pass from (1) to (2), it is sufficient to show that $\sum 1 / i$ has a finite

Received January 7, 1942.
${ }^{1}$ C. F. Gauss, Werke, vol. 10, part 1, 1917, p. 11 and p. 17. For the remainder term, cf. E. Landau, Über die Verteilung der Zahlen, welche aus ν Primfaktoren zusammengesetzt sind, Göttingen Nachrichten, 1911, pp. 361-381.

