A SELF-RECIPROCAL FUNCTION

By R. 8. Varma
The object of this paper is to establish the following theorem.
The function
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is' R, , provided R(v) > —1.
We shall require the integral
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This can be evaluated by substituting for J,(ax)J,(az) the equivalent infinite
series (see [4], p. 380)
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and integrating term by term by the help of the integral (see [2])
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We then obtain
I= a2 TG +iptdgtm+ Prls+iptig—m+d
T+ D@+ DTG +3p+ 3¢ —k+ 1)
1 1 11 1 1,3+ 1 1 m + 3,
(1) X 4F, [zp :-lf-ql_,'- 2 2P -q}—-iql-,.l_ s + 211:1‘;9_‘:*'1’ + 2
%8+%p+%q—m+%;~2a2]
s+ip+ig—k+1 ’
Term by term integration is justified by virtue of
@) | Wen(@) | = 03", | ()| = 07

and by virtue of the size of the terms in the series of J,(ax)J(ax). Hence the
result (1) has been shown to be true when R(p) > —1, R(g) > —1, and
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1 Following Hardy and Littlewood, we say that a function is R, when it is self-reciprocal
in the Hankel-transform of order ».
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