THE ASYMPTOTIC FORMS OF THE SOLUTIONS OF AN ORDINARY LINEAR MATRIC DIFFERENTIAL EQUATION IN THE COMPLEX DOMAIN

By Homer E. Newell, Jr.

1. Introduction. The matric differential equation

$$
\frac{d}{d x} Y(x, \lambda)=\left\{\lambda\left(\delta_{i j} r_{j}(x)\right)+\left(q_{i j}(x, \lambda)\right)\right\} Y(x, \lambda)
$$

under conditions to be given below, has solutions of the form $P(x, \lambda) E(x, \lambda)$, where $E(x, \lambda)=\left(\delta_{i j} \exp \left\{\lambda \int^{x} r_{j}(x) d x\right\}\right)$ and $P(x, \lambda)$, analytic in x, reduces uniformly in x to the identity matrix when λ becomes infinite.

The present discussion rests directly upon, and extends, theory recently published by R. E. Langer ${ }^{1}$ who showed that if the coefficient functions $r_{j}(x)$ are all analytic and bounded in a region of the complex plane and their differences $r_{i}(x)-r_{j}(x)(i \neq j)$ are all bounded from zero and if, moreover, the functions $q_{i j}(x, \lambda)$ are analytic in x, bounded in x and λ and, for $|\lambda|$ large, admit either actual or asymptotic expansions in λ^{-1} with coefficients analytic and bounded in x, then a solution of the form $P(x, \lambda) E(x, \lambda)$ exists for the above differential equation in the neighborhood of any specified point of the given x region. This paper, for the most part, deals with equations in which the coefficient functions $r_{j}(x)$ may have poles and the differences $r_{i}(x)-r_{j}(x)(i \neq j)$ may have zeros on the boundary of the x region in question. Regions of existence which abut such a pole or zero are established for a solution of the stated form $P(x, \lambda) E(x, \lambda)$.

In addition, it is shown that the restriction to finite x regions, assumed in Langer's discussion, may be removed.
2. The matric equation. Throughout the considerations to follow, the differential equation ${ }^{2}$

$$
\begin{equation*}
\frac{d}{d x} Y(x, \lambda)=\{\lambda R(x)+Q(x, \lambda)\} Y(x, \lambda) \tag{2.1}
\end{equation*}
$$

Received January 3, 1941.
${ }^{1}$ R. E. Langer, The boundary problem of an ordinary linear differential system in the complex domain, Trans. of the Am. Math. Soc., vol. 46(1939), pp. 151-162.

The author wishes to express his thanks to Professor Langer for most valuable suggestions received during the preparation of the present paper.
${ }^{2}$ In the notation adopted here, italic capitals without subscripts denote square matrices of order n. The operations of differentiation and integration are applied in accordance with the relations

$$
\frac{d}{d x}\left(y_{i j}(x)\right)=\left(\frac{d}{d x} y_{i j}(x)\right), \quad \int^{x}\left(y_{i j}(x)\right) d x=\left(\int^{x} y_{i j}(x) d x\right)
$$

in which the right members serve to define the left. Also, a matrix is said to be analytic if each element is analytic.

