ABSOLUTE NÖRLUND SUMMABILITY

BY LEONARD McFadden

1. Introduction. The method of summability considered here was first introduced by Woronoi [11],¹ but is more closely identified with the name of Nörlund [8]. Accordingly, we will use the term "Nörlund transformations" to indicate the transformations in question.

Let $\{p_n\}$ be a sequence of constants, real or complex valued, and let $\{P_n\}$ denote the sequence of partial sums. We will call $\{t_n\}$ the Nörlund transform of an arbitrary sequence $\{U_n\}$, where

(1.01)
$$t_n = \sum_{v=0}^n \frac{p_{n-v} U_v}{P_n},$$

it being assumed of course that $P_n \neq 0$. The sequence $\{U_n\}$ is said to be summable by the Nörlund mean N_p defined by $\{p_n\}$, or summable N_p , if $\lim_{n \to \infty} t_n$ exists.

The conditions for regularity of such a transformation are

(1.02)
$$\lim_{n \to \infty} \frac{p_n}{P_n} = 0,$$

(1.03)
$$\sum_{k=0}^{n} |p_{k}| \leq C |P_{n}|,$$

where C is a finite positive constant. It is easily seen that (1.02) is equivalent to

(1.04)
$$\lim_{n \to \infty} \frac{P_{n-1}}{P_n} = 1.$$

We might also note that, if p_n is real and non-negative, condition (1.03) is satisfied automatically and, if in addition p_n is non-increasing, condition (1.02) is also satisfied.

The sequence $\{U_n\}$ will be said to be absolutely summable by the Nörlund mean defined by the sequence $\{p_n\}$, or summable $|N_p|$, provided that

(1.05)
$$\sum_{n=1}^{\infty} |t_n - t_{n-1}| \leq C < \infty.$$

If we let N_p and $|N_p|$ denote, respectively, the class of sequences summable N_p and $|N_p|$, we have the following

(1.06) THEOREM.
$$|N_p| \subset N_p; N_p \not \subset |N_p|.$$

Received November 3, 1941.

¹ Numbers in brackets refer to the bibliography at the end of the paper.