A GENERALIZATION OF THE EUCLIDEAN ALGORITHM TO SEVERAL DIMENSIONS

BY BARKLEY ROSSER

Summary. The Euclidean algorithm is generalized to two, three, and four dimensions. The generalized algorithm is applied to the solution of the following problems.

Given a positive definite quadratic form, find integer values of the variables, not all zero, which make the value of the form a minimum.

Given n linear forms in n variables with determinant $\Delta \neq 0$, find integer values of the variables, not all zero, such that each linear form $\leq |\Delta|^{1/n}$ in absolute value.

Given n real numbers, x_1, \dots, x_n , not all rational, find as many sets, a, a_1 , a_2, \dots, a_n , of integers as desired such that simultaneously

Given

$$|ax_i - a_i| \leq a^{-1/n}$$
 $(i = 1, 2, \dots, n).$

1 0

$$L = \sum_{i=1}^n a_i x_i,$$

the a_i 's being coprime integers, find a general solution, in integers, of $L = k_1$, namely

$$x_i = \sum_{j=1}^n b_{ij} k_j$$
 $(i = 1, \dots, n)$

(where the b's are fixed integers, k_1 is the same integer that occurs in $L = k_1$, and the other k's are arbitrary integers) such that $\sum (b_{ij})^2$ shall be a minimum.

Given a hypersphere, σ , with center at the origin and radius ≥ 1 , and

$$L = \sum_{i=1}^n u_i x_i,$$

the u's being real numbers, find a lattice point distinct from the origin within (or on) σ and as close to the hyperplane L = 0 as possible.

Given two symmetric positive definite matrices, A and B, with real components, find whether there is a matrix P with integral components and determinant ± 1 such that $B = P^{T}AP$, and if so, to find all such P's.

We open the paper with some preliminary conventions regarding terminology.

We shall use lower case italics from a to t inclusive for rational integers, and from u to z inclusive for real numbers. We shall use upper case italics from A to Q inclusive for square matrices with real elements, and from R to Z in-

Received August 9, 1941; presented to the American Mathematical Society, May 2, 1941. A summary of this paper appeared under the same title in Proceedings of the National Academy of Sciences, vol. 27(1941), pp. 309-311.