THE SUM OF THE DIVISORS OF A POLYNOMIAL

By E. F. Canaday

1. Introduction. Let

$$
A=A(x)=x^{k}+\alpha x^{k-1}+\cdots+\lambda
$$

denote a polynomial with coefficients modulo 2. All coefficients may then be written 1 or 0 and the number of polynomials of degree k is 2^{k}.

Let $\sigma(A)$ denote the sum of the divisors of A. If $\sigma\left(A_{1}\right)=A_{2}$, we write $A_{1} \rightarrow A_{2}$. Clearly A_{1} and A_{2} are of equal degree. Consider the sequence $A_{1} \rightarrow A_{2} \rightarrow A_{3} \rightarrow \cdots$ where $\sigma\left(A_{j}\right)=A_{j+1}$. Since the number of polynomials of any given degree is finite, after a certain point an A_{i} in the sequence will be repeated. If $A_{1} \rightarrow A_{2} \rightarrow \cdots \rightarrow A_{n} \rightarrow A_{1}$, all A_{i} being distinct, the set A_{1}, \cdots, A_{n} will be called an n-ring. In particular, if $A \rightarrow A$, i.e. $\sigma(A)=A$, we shall call A a one-ring. Other definitions and notation are given in section 2.

Section 3 contains theorems on weight. In section 4 are developed some invariant properties of the operator σ. Section 5 consists principally of lemmas needed for subsequent theorems. It also contains the useful theorem: The only complete polynomials whose irreducible factors are all of the form $x^{\alpha}(x+1)^{\beta}+1$ are $x^{2}+x+1, x^{4}+x^{3}+x^{2}+x+1$ and $x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$.

In sections $6-8$, one-rings and methods of constructing them are discussed. First the trivial type $x^{2 n-1}(x+1)^{2 n-1}$ is treated, then the type $x^{h}(x+1)^{k} A$, of which eleven are found, and then a proof is given that there are no others of certain sub-types. Lastly the type B^{2}, where $(B, x(x+1))=1$, is discussed but none found. It seems plausible that none of this type exist but this is not proved.

Section 9 is devoted mainly to two-rings. There is the infinite class

$$
x^{2^{\alpha-1}}(x+1)^{2^{\beta-1}} \leftrightarrow x^{2 \beta-1}(x+1)^{2 \alpha-1} \quad(\alpha \neq \beta)
$$

corresponding to the infinite class of trivial one-rings. In addition we determine the two-rings of certain forms. The simplest of these is

$$
\begin{equation*}
x^{\alpha}(x+1)^{\beta} \rightarrow A \rightarrow x^{\alpha}(x+1)^{\beta} . \tag{1.1}
\end{equation*}
$$

We show that there are only three of these.
Generalizing (1.1) we seek all rings of the form

$$
\begin{equation*}
x^{\alpha_{1}}(x+1)^{\beta_{1}} \rightarrow A_{1} \rightarrow x^{\alpha_{2}}(x+1)^{\beta_{2}} \rightarrow A_{2} \rightarrow \cdots \rightarrow A_{P} \rightarrow x^{\alpha_{1}}(x+1)^{\beta_{1}} \tag{1.2}
\end{equation*}
$$

where alternate polynomials are of the form $x^{\alpha}(x+1)^{\beta}$. We show that there are only nine of this form, three two-rings (1.1) and six four-rings.

Received September 20, 1941.

