THE FUNCTION OF MEAN CONCENTRATION OF A CHANCE VARIABLE

By Tatsuo Kawata

1. Introduction

1.1. Let X be a one-dimensional chance variable which is defined by its probability distribution function

$$Pr(X < x) = \sigma(x).$$

Thus $\sigma(x)$ is a non-decreasing function such that $\sigma(-\infty) = 0$ and $\sigma(\infty) = 1$. Let $\{X_n\}$ be a sequence of independent chance variables; that is, let the k-dimensional chance variable $(X_{i_1}, X_{i_2}, \dots, X_{i_k})$ be defined by the condition

$$Pr(X_{i_1} < x_1, X_{i_2} < x_2, \dots, X_{i_k} < x_k)$$

$$= Pr(X_{i_1} < x_1)Pr(X_{i_2} < x_2) \cdots Pr(X_{i_k} < x_k),$$

for every finite set of distinct integers i_1 , i_2 , \cdots , i_k and for every set of real numbers x_1 , x_2 , \cdots , x_k .

Consider the series of independent chance variables

$$(1.1) \sum_{n=1}^{\infty} X_n.$$

The series (1.1) is said to converge in probability if

$$Pr(|S_n - S| > \epsilon) \to 0$$
 as $n \to \infty$,

for every $\epsilon > 0$ for some chance variable S, where S_n denotes the partial sum $X_1 + X_2 + \cdots + X_n$. The convergence problem of (1.1) was treated by a great number of writers.

Among many results concerning the convergence problem of (1.1), there are two theories, one of which is due to A. Khintchine and A. Kolmogoroff ([11]; see also [5], [8], [12], [13] and [15], p. 142) and the other due to P. Lévy ([14]; [15], pp. 130-140). A main theorem in the former theory is the one which gives the necessary and sufficient conditions for the convergence in probability of (1.1) in terms of expectations of X_i and X_i^2 under certain hypotheses. The central idea in Lévy theory is to use the function of maximum concentration.

Let the distribution function of a chance variable X be $\sigma(x)$. The function

(1.2)
$$Q(h) = \max_{-\infty < x < \infty} \{ \sigma(x+h+0) - \sigma(x-h-0) \}$$

Received May 25, 1940; in revised form, April 30, 1941.

¹ Numbers in brackets refer to the bibliography at the end.